インターネットにおける非線形フィードバック制御の近似解析
スポンサーリンク
概要
- 論文の詳細を見る
本報告書では,非線形確率微分(差分)方程式を近似的に解析するためのモーメントマトリクス解析(MMA)を提案する.MMAでは,まず,非線形確率微分(差分)方程式を,離散イベント上で定義されたシステム状態のモーメントに関する連立方程式で近似する.次に,N+1次以上のモーメントを省略することにより,連立方程式の係数からなる行列と,N次以下のモーメントの期待値からなるモーメントベクトルに関する行列方程式を導く.この係数行列の固有値と固有ベクトルを求めることにより,システム状態のモーメントと過渡応答の期待値を得ることが出来る.インターネットトラヒックの特性を,上記MMA及びシミュレーションにより解析し,MMAが非線形確率微分方程式の解析に有効であることを示す.
- 社団法人電子情報通信学会の論文
- 2003-12-11
著者
-
佐藤 仁樹
公立はこだて未来大学システム情報科学部
-
佐藤 仁樹
公立はこだて未来大学システム情報科学部情報アーキテクチャ学科
-
佐藤 仁樹
公立はこだて未来大学システム情報科学研究科
-
佐藤 仁樹
公立はこだて未来大学
関連論文
- Schrodinger-type equation for nonlinear optimization and its application to global optimization (非線形問題)
- モーメントベクトル方程式に基づく多粒子系の解析
- モーメントベクトル空間における空間埋め込み方程式を用いた高次元非線形システムの解析
- 強化学習を用いた高次元非線形時系列予測
- 非線形最適化に関するシュレディンガー型方程式と大域的最適化への応用
- 非線形方程式の近似および統計量の解析 : モーメントベクトル方程式に基づく方法
- 線形ベクトル空間におけるロジスティック写像の統計解析
- 高次元行動空間における強化学習 : 主成分分析による行動空間圧縮(非線形制御,一般)
- 強化学習に基づく非線形アプローチによるロバストルーチング
- 関数近似のための特徴空間の構築と強化学習への応用(一般,制御システムとダイナミックス)
- 関数近似のための特徴空間の構築と強化学習への応用
- 高次元連続状態空間における強化学習 : 多変量解析による状態空間の圧縮
- 確率的連続行動の強化学習 : 直交関数展開による確率密度関数の近似
- 波動係数方程式に基づく大域的最適化(一般,機械学習によるバイオデータマインニング・生命現象の非線形性,一般)
- リアルタイム可変レート動画通信システムの符号化パラメータ制御(画像)
- インターネットにおける非線形フィードバック制御の近似解析
- インターネットにおける非線形フィードバック制御の近似解析
- モーメントベクトル方程式の固有値解析に基づく大域結合写像の構造解析(一般及び雑音を有効利用する神経系やそのモデル)
- モーメントベクトル方程式の固有値解析に基づく大域結合写像の構造解析(一般及び雑音を有効利用する神経系やそのモデル)
- 報酬を考慮した主成分分析を用いた雑音環境下での波形認識(一般及び雑音を有効利用する神経系やそのモデル)
- 報酬を考慮した主成分分析を用いた雑音環境下での波形認識(一般及び雑音を有効利用する神経系やそのモデル)
- 画像データの学習クラスタリング
- 画像データの学習クラスタリング
- 遺伝的アルゴリズムを用いた基底関数構築と非線形時系列予測
- 大3-1 オープンな学習環境における活動経験と管理システムの効果(教授・学習,口頭発表)
- 非線形時系列予測のための基底関数構築(テーマセッション,大規模データベースとパターン認識)