不均一分布定数回路の等価変換
スポンサーリンク
概要
- 論文の詳細を見る
分布インダクタンスL(x),分布キャパシタンスC(x)を有する不均一な1次元無損失分布定数回路について,分布定数は異なっても電気的特性が全く同一であるための条件〔等価条件)を明らかにする。また,機械的に等価変換する具体的手段として,空間座標伸縮変換なる等価変換公式を導く。これらの結論は,構造(分布定数)上ある種の制約を受けた不均一伝送線路で実現できる特性の範囲についての論議を可能とするものである。lつの応用例として,伝送線路と量子散乱系の等価関係を検討し,伝送線路(ひいては,受動回路)によるモデルの限界を明らかにする。
- 一般社団法人電子情報通信学会の論文
- 1995-06-22
著者
関連論文
- 量子散乱3層構造における反射係数の極・零点の漸近分布
- 量子散乱3層構造における反射係数の極・零点の漸近分布
- 量子散乱3層構造における反射係数の極・零点の漸近分布
- 不均一伝送線路のω→∞における漸近的ふるまいと高域通過特性(信号処理,LSI,及び一般)
- 不均一伝送線路のω→∞における漸近的ふるまいと高域通過特性(信号処理,LSI,及び一般)
- 不均一伝送線路のω→∞における漸近的ふるまいと高域通過特性(信号処理,LSI,及び一般)
- ガウス関数型超格子における反射係数の極・零点の分布に関する報告
- ガウス関数型超格子における反射係数の極・零点の分布に関する報告
- ガウス関数型超格子における反射係数の極・零点の分布に関する報告
- ガウス関数型超格子による散乱特性の検討
- ガウス関数型超格子による散乱特性の検討
- ガウス関数型超格子による散乱特性の検討
- ガウス関数型超格子における反射係数の極・零点の分布に関する報告
- 斥力型対称2重障壁構造における共鳴準位の実現
- 任意の障壁幅で共鳴する共鳴トンネル構造
- 対称2重障壁構造における共鳴トンネリング特性
- 共鳴可能条件, 共鳴バンドと共鳴対
- 対称2重障壁構造における共鳴特性の解析と合成
- 線形独立なベクトルの極大集合に関する2,3の定理
- 単一禁制帯を与えるポテンシャルの検討
- 厳密解を有する不均一伝送線路の体系的導出 : 第2報
- 厳密解を有する不均一伝送線路の体系的導出 第2報
- 不均一分布定数回路の等価伸縮変換について
- 不均一分布定数回路の等価伸縮変換について
- 不均一分布定数回路の等価伸縮変換について
- CAS2000-58 / NLP2000-66 不均一伝送線路の項別合成法の検討
- CAS2000-58 / NLP2000-66 不均一伝送線路の項別合成法の検討
- 厳密解を有する不均一伝送線路の体系的導出
- 厳密解を有する不均一伝送線路の体系的導出
- 量子散乱3層構造における反射係数の極・零点の漸近分布
- 量子散乱3層構造における反射係数の極・零点の漸近分布
- 厳密解を有する不均一伝送線路の体系的導出
- 厳密解を有する不均一伝送線路の体系的導出
- 漸近的等分配性の数値計算による検証
- 不均一分布定数回路の伸縮変換について
- ポテンシャル3層構造における反射係数の極・零点の漸近分布
- 不均一分布定数回路の等価変換
- 束縛準位の存在条件
- 量子散乱問題における反射係数の極と零点