Location of the Disulfide Bonds of the Sweetness-suppressing Polypeptide Gurmarin
スポンサーリンク
概要
- 論文の詳細を見る
The sweetness-suppressing polypeptide gurmarin has been isolated from the leaves of Gyntnenla sylvestre and consists of 35 amino acid residues including three intramolecular disulfide bonds. The primary structure has already been determined. The positions of the disulfide bonds were located, by a combination of mass spectrometric analysis and sequencing of cystine-containing peptides obtained by thermolysin-catalyzed hydrolysis of gurmarin, to be at CysFCys18, Cys10-Cys23, and Cys17-Cys33.
- 社団法人日本農芸化学会の論文
- 1995-10-23
著者
-
Ota Masafumi
Central Research Laboratories Ajinomoto Co. Inc.
-
Ariyoshi Yasuo
Central Research Laboratories, Ajinomoto Co., Inc.
-
Ariyoshi Yasuo
Central Research Laboratories Ajinomoto Co. Inc
関連論文
- Enzymatic Synthesis and Chemical Properties of Sweet Aminomalonyl (Ama) Dipeptide Esters (R)-Ama-(S)-Phe-OMe and (R)-Ama-(S)-Phe-OEt
- N-Terminal Extension of Sweet Peptides in Relation to the Structural Features of Peptide Sweeteners(Organic Chemistry)
- Solid-phase Synthesis and Structure-Taste Relationships of Analogs of the Sweet Protein Monellin
- Highly Probable Active Site of the Sweet Protein Monellin
- Solid-Phase Synthesis of [Asn^]-, [Asn^]-, [Gln^]-, and [Asn^]Monellin, Analogues of the Sweet Protein Monellin
- Solid-Phase Synthesis of Crystalline [Ser^] B-Chain Monellin, an Analogue of the Sweet Protein Monellin(Organic Chemistry)
- Solid-Phase Synthesis of Crystalline Monellin, a Sweet Protein(Organic Chemistry)
- Solid-Phase Synthesis and Crystallization of [Asn^, Gln^, Asn^]-A-Chain-[Asn^, Glu^]-B-Chain-Monellin, an Analogue of the Sweet Protein Monellin(Organic Chemistry)
- Complete Amino Acid Sequence of the Sweet Protein Monellin(Biological Chemistry)
- Solid-Phase Synthesis and Crystallization of Monellin, an Intensely Sweet Protein(Organic Chemistry)
- Inhibition of Angiotensin-Converting Enzyme by Synthetic Peptide Fragments of Various β-Caseins(Biological Chemistry)
- Inhibition of Angiotensin-Converting Enzyme by Synthetic Peptide Fragments of Human κ-Casein(Biological Chemistry)
- Inhibition of Angiotensin-converting Enzyme by Synthetic Peptides of Human β-Casein(Biological Chemistry)
- Location of the Disulfide Bonds of the Sweetness-suppressing Polypeptide Gurmarin
- Inhibition of Prolyl Endopeptidase by Synthetic β-Casein Peptides and Their Derivatives with a C-Terminal Prolinol or Prolinal
- Inhibition of Prolyl Endopeptidase by Synthetic Peptide Fragments of Human β-Casein(Food & Nutrition)
- Synthesis, Folding, and Biological Activities of Peptide Fragments of Sweet Protein Monellin and Human Cystatin B (Stefin B)
- Solid-Phase Synthesis of Single-Chain Monellin, a Sweet Protein
- Total Synthesis of The Sweet Protein Mabinlin II
- The Synthesis of a Sweet Peptide, α-L-Aspartyl-L-phenylalanine Methyl Ester, without the Use of Protecting Groups
- A new synthesis of glutathione via the thiazoline peptide.
- The Reaction of Aspartyl Dipeptide Esters with Ketones
- Studies of Hydroxy Amino Acids. II. The Separation of Diastereoisomers of Hydroxy Amino Acids
- The Convenient Preparation of L-Aspartic Anhydride Hydrochloride and Hydrobromide
- Studies of Hydroxy Amino Acids. I. Separation of Diastereoisomers of Threonine
- Structure-taste relationships of aspartyl tripeptide esters.
- Synthesis of aspartyl pentapeptide esters in relation to structural features of sweet peptides.
- The Structure-Taste Relationships of the Dipeptide Esters Composed of L-Aspartic Acid and β-Hydroxy Amino Acids
- Structure-taste relationships of aspartyl tetrapeptide esters.