スポンサーリンク
Aminoscience Laboratories Ajinomoto. Co. Inc. | 論文
- Structural Characterization of the 16-kDa Allergen, RA17,in Rice Seeds. Prediction of the Secondary Structure and Identification of Intramolecular Disulfide Bridges
- Novel Enzymatic Method for the Production of Xylitol from D-Arabitol by Gluconobacter oxydans(Microbiology & Fermentation Technology)
- Transaldolase/Glucose-6-phosphate Isomerase Bifunctional Enzyme and Ribulokinase as Factors to Increase Xylitol Production from D-Arabitol in Gluconobacter oxydans(Microbiology & Fermentation Technology)
- Cloning of the Xylitol Dehydrogenase Gene from Gluconobacter oxydans and Improved Production of Xylitol from D-Arabitol(Microbiology & Fermentation Technology)
- Protease Catalyzed Reaction of Polyamine Incorporation into Protein
- Adenosine Phosphorolyzing Enzymes from Microorganisms and Ribavirin Production by the Application of the Enzyme(Microbiology & Fermentation Industry)
- Mechanism of Stereospecific Production of L-Amino Acids from the Corresponding 5-Substituted Hydantoins by Bacillus brevis(Microbiology & Fermentation Industry)
- Enzymatic Production of L-Amino Acids from the Corresponding 5-Substituted Hydantoins by a Newly Isolated Bacterium, Bacillus brevis AJ-12299(Microbiology & Fermentation Industry)
- Enzymatic Production of Ribavirin from Purine Nucleosides by Brevibacterium acetylicum ATCC 954(Microbilolgy & Fermentation Industry)
- Enzumatic Production of Ribavirin from Orotidine by Erwinia carotovora AJ 2992(Pesticide Chemistry)
- Enzymatic Production of Ribavirin from Pyrimidine Nucleosides by Enterobacter aerogenes AJ 11125(Microbiology & Fermentation Industry)
- Enzymatic Production of Ribavirin(Microbiology & Fermentation Industry)
- Production of _L-Tryptophan by 5-Fluorotryptophan and Indolmycin Resistant Mutants of Bacillus subtilis K(Microbiology & Fermentation Industry)
- Effect of L-Phenylalanine and L-Methionine on the Appearance of L-Tryptophan-Producing Mutants of Bacillus subtilis K
- Increased Cellulose Production from Sucrose with Reduced Levan Accumulation by an Acetobacter Strain Harboring a Recombinant Plasmid
- The Characterization of Acetic Acid Bacteria Efficiently Producing Bacterial Cellulose from Sucrose : The Proposal of Acetobacter xylinum subsp. nonacetoxidans subsp. Nov.
- High Rate Production in Static Culture of Bacterial Cellulose from Sucrose by a Newly Isolated Acetobacter Strain
- Screening of Bacterial Cellulose-producing Acetobacter Strains Suitable for Sucrose as a Carbon Source
- Increased Cellulose Production from Sucrose by Acetobacter after Introducing the Sucrose Phosphorylase Gene
- Characterization of the Biosynthetic Pathway of Cellulose from Glucose and Fructose in Acetobacter xylinum