Effects of Transverse Electric Fields on Quasi-Landau Levels in Zigzag Graphene Nanoribbons
スポンサーリンク
概要
- 論文の詳細を見る
The magnetoelectronic properties of one-dimensional zigzag graphene nanoribbons are investigated using the Peierls tight-binding model with uniform magnetic and electric fields. They are mainly determined by external fields and quantum confinement effects. Magnetic fields lead to quasi-Landau levels (QLLs), enhance partial flat bands, and result in Landau wave functions. Electric fields significantly distort dispersionless QLLs, change the band symmetry, induce more band-edge states, split partial flat bands, and drastically alter the distribution of wave functions. The density of states directly reflects the main features of energy bands, such as the numbers, frequencies, heights, and divergence forms of prominent peaks, which can be confirmed experimentally. Magneto-optical absorption spectra are predicted to be markedly changed under the influence of external electric fields.
- 2011-04-15
著者
-
Lin Ming-fa
Department Of Physics National Cheng Kung University
-
Lee Ming-hsun
Department Of Physics National Cheng Kung University
-
Chang Chen-Peng
Center for General Education, Tainan University of Technology, Tainan 701, Taiwan
-
Chung Hsien-Ching
Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
-
Huang Yuan-Cheng
Center for General Education, Kao Yuan University, Kaohsiung 821, Taiwan
関連論文
- Themral Properties of Carbon Toroids
- Magneto-Optical Properties of Armchair Nanographene Ribbons under Spatially Modulated Electric Field
- Magnetoelectronic and Optical Properties of Monolayer and AB-Stacked Bilayer Graphenes
- Transport Properties of Carbon Toroids
- Terahertz Radiation Mechanism of Native n-Type InN with Different Carrier Concentrations
- Electronic Excitations in Cylinder Superlattices
- Electronic States of Toroidal Carbon Nanotubes
- Magnetic Properties of Toroidal Carbon Nanotubes
- Electron-Electoron Interactions in a Thin Toroid
- Temperature-Dependent Electronic Excitations of Carbon Toroids : Condensed Matter: Electronic Properties, etc.
- Temperature-Induced Plasmons in a Graphite Sheet : Condensed Matter: Structure, etc.
- Plasmons and Optical Properties of Semimetal Graphite : Condensed Matter: Electronic Properties, etc.
- Electronic Collective Excitations in AB-Stacked Nanographite Ribbons
- π-Electronic Excitations in Multiwalled Carbon Nanotubes
- Effects of Transverse Electric Fields on Quasi-Landau Levels in Zigzag Graphene Nanoribbons
- Deformation-Induced Anisotropy of Absorption Spectra in Bilayer Graphenes
- Elementary Excitations in Cylinder Bundles
- π-Electronic Excitations in Intercalated Carbon Nanotubes : Condensed Matter: Electronic Properties, etc.
- Plasmons in Narrow-Gap Carbon Toroids
- Optical Properties of Nanographite Ribbons : Condensed Matter: Electronic Properties, etc.
- Curvature Effects on Magnetoelectronic Properties of Nanographene Ribbons
- Diagonalization of Landau Level Spectra in Rhombohedral Graphite
- Modulation Effects of Periodic Potentials on the Electronic Properties of Bilayer Bernal Graphene: Tight-Binding Model
- Electronic Collective Excitations in AB-Stacked Nanographite Ribbons
- Terahertz Radiation Mechanism of Native n-Type InN with Different Carrier Concentrations