Quantitative Measurement of Focused Ultrasound Pressure Field Using Subtraction Shadowgraph
スポンサーリンク
概要
- 論文の詳細を見る
In this study, the measurement of focused ultrasound pressure field by the subtraction shadowgraph method was investigated. Conventional shadowgraph is known as a fast, noninvasive, but qualitative method of ultrasound pressure field measurement. On the other hand, the subtraction shadowgraph method in this paper can provide quantitative projection images, from which the ultrasound pressure field can be reconstructed. Subtraction shadowgraph images of a focused ultrasound field were obtained, it was converted to the projection of the refractory distribution, and the focused ultrasound pressure field was reconstructed from the projection by computed tomography algorithm. The result was compared with that of hydrophone measurement, and successful reconstruction of the axi-symmetric pressure distribution of the focal field was confirmed in both lateral and axial cross sections.
- 2011-07-25
著者
-
Umemura Shin-ichiro
Graduate School of Bioengineering, Tohoku University, 6-6 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
-
Yoshizawa Shin
Graduate School of Engineering, Tohoku University, Sendai 980-5879, Japan
-
Shimazaki Yuta
Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
-
Omura Ryosuke
Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
関連論文
- Analysis of High-Intensity Focused Ultrasound Source Using Time Reversal: Effect of Lamb-Like Waves
- Ultrasonic coagulation of large tissue region by generating multiple cavitation clouds in direction perpendicular to ultrasound propagation (Special issue: Ultrasonic electronics)
- Phase Change Nanodroplets and Microbubbles Generated from Them as Sources of Chemically Active Cavitation
- Quantitative Measurement of Focused Ultrasound Pressure Field Using Subtraction Shadowgraph
- Breathing-Mode Ceramic Element for Therapeutic Array Transducer
- Staircase-Voltage Metal–Oxide–Semiconductor Field-Effect Transistor Driver Circuit for Therapeutic Ultrasound
- Sustaining Microbubbles Derived from Phase Change Nanodroplet by Low-Amplitude Ultrasound Exposure
- Acoustic Response of Microbubbles Derived from Phase-Change Nanodroplet
- Therapeutic Array Transducer Element Using Coresonance between Hemispherical Piezoceramic Shell and Water Sphere: Effect of Load Masses of Support and Electric Contact
- Enhancement of Localized Heating by Ultrasonically Induced Cavitation in High Intensity Focused Ultrasound Treatment
- Coagulation of Large Regions by Creating Multiple Cavitation Clouds for High Intensity Focused Ultrasound Treatment
- Efficient Generation of Cavitation Bubbles in Gel Phantom by Ultrasound Exposure with Negative-Followed by Positive-Peak-Pressure-Emphasized Waves
- Large Volume Coagulation Utilizing Multiple Cavitation Clouds Generated by Array Transducer Driven by 32 Channel Drive Circuits
- Optical Phase Contrast Mapping of Highly Focused Ultrasonic Fields
- Analysis of Temperature Rise Induced by High-Intensity Focused Ultrasound in Tissue-Mimicking Gel Considering Cavitation Bubbles
- Enhancement of Focused Ultrasound Treatment by Acoustically Generated Microbubbles
- Analysis of Temperature Rise Induced by High-Intensity Focused Ultrasound in Tissue-Mimicking Gel Considering Cavitation Bubbles