Analysis of High-Intensity Focused Ultrasound Source Using Time Reversal: Effect of Lamb-Like Waves
スポンサーリンク
概要
- 論文の詳細を見る
The pressure distribution of a focused ultrasound source was reconstructed from a measured pressure field on the focal plane using time-reversal. The two-dimensional Fourier transform of the distribution in the time and space domain showed a peak with a finite phase velocity, which corresponds to a mode of waves propagating from the circumference to the center of the transducer similar to Lamb waves. It was numerically confirmed that the propagating waves significantly enhanced the secondary lobe on the near side of the main focal lobe. The near side lobe was markedly reduced by increasing the thickness of the transducer by three times in the experiment. This significant change is consistent with the hypothesis that the near side lobe was formed by Lamb-like waves.
- 2011-04-25
著者
-
Umemura Shin-ichiro
Graduate School of Bioengineering, Tohoku University, 6-6 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
-
Kaneshima Yasuhiro
Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
-
Yoshizawa Shin
Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
-
Yoshizawa Shin
Graduate School of Engineering, Tohoku University, Sendai 980-5879, Japan
関連論文
- Analysis of High-Intensity Focused Ultrasound Source Using Time Reversal: Effect of Lamb-Like Waves
- Ultrasonic coagulation of large tissue region by generating multiple cavitation clouds in direction perpendicular to ultrasound propagation (Special issue: Ultrasonic electronics)
- Phase Change Nanodroplets and Microbubbles Generated from Them as Sources of Chemically Active Cavitation
- Quantitative Measurement of Focused Ultrasound Pressure Field Using Subtraction Shadowgraph
- Breathing-Mode Ceramic Element for Therapeutic Array Transducer
- Staircase-Voltage Metal–Oxide–Semiconductor Field-Effect Transistor Driver Circuit for Therapeutic Ultrasound
- Sustaining Microbubbles Derived from Phase Change Nanodroplet by Low-Amplitude Ultrasound Exposure
- Acoustic Response of Microbubbles Derived from Phase-Change Nanodroplet
- Therapeutic Array Transducer Element Using Coresonance between Hemispherical Piezoceramic Shell and Water Sphere: Effect of Load Masses of Support and Electric Contact
- Enhancement of Localized Heating by Ultrasonically Induced Cavitation in High Intensity Focused Ultrasound Treatment
- Coagulation of Large Regions by Creating Multiple Cavitation Clouds for High Intensity Focused Ultrasound Treatment
- Efficient Generation of Cavitation Bubbles in Gel Phantom by Ultrasound Exposure with Negative-Followed by Positive-Peak-Pressure-Emphasized Waves
- Large Volume Coagulation Utilizing Multiple Cavitation Clouds Generated by Array Transducer Driven by 32 Channel Drive Circuits
- Optical Phase Contrast Mapping of Highly Focused Ultrasonic Fields
- Analysis of Temperature Rise Induced by High-Intensity Focused Ultrasound in Tissue-Mimicking Gel Considering Cavitation Bubbles
- Enhancement of Focused Ultrasound Treatment by Acoustically Generated Microbubbles
- Analysis of Temperature Rise Induced by High-Intensity Focused Ultrasound in Tissue-Mimicking Gel Considering Cavitation Bubbles