Bend-Mode Liquid Crystal Cells Stabilized by Aligned Polymer Walls
スポンサーリンク
概要
- 論文の詳細を見る
We have studied ways of stabilizing the bend configuration in $\pi$-cells by forming polymer walls. This novel device with polymer walls, which makes an initial splay-bend transition unnecessary, incorporates minute structures fabricated by applying the processes of local photopolymerization-induced phase separation and electric field orientation. In fabricating the device, a mixed solution of nematic liquid crystal and an ultraviolet (UV)-curable liquid-crystalline monomer was subjected to an electric field to induce the bend transition, and UV light was illuminated on selected regions in this mixed solution to cause photopolymerization, so that minute aligned polymer walls could be selectively formed inside the device. We examined the operation of the device and found that the bend-alignment cells performed basic functions in the stable bend state, and that this state can be maintained even if the cells are set to a small pre-tilt angle, such as 1°.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2005-02-15
著者
-
SATO Hiroto
NHK Science & Technical Research Laboratories
-
FUJIKAKE Hideo
NHK Science & Technical Research Laboratories
-
KAWAKITA Masahiro
NHK Science & Technical Research Laboratories
-
TAKIZAWA Kuniharu
Faculty of Engineering, Seikei University
-
Kikuchi Hiroshi
Nhk Science & Technical Research Laboratories
-
Yamamoto Hirofumi
Faculty Of Engineering Ehime University
-
Kawakita Masahiro
NHK Science & Technical Research Laboratories, 1-10-11 Kinuta, Setagaya-ku, Tokyo 157-8510, Japan
-
Takizawa Kuniharu
Faculty of Engineering, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino, Tokyo 180-8633, Japan
-
Sato Hiroto
NHK Science & Technical Research Laboratories, 1-10-11 Kinuta, Setagaya-Ku, Tokyo 157-8510, Japan
-
Yamamoto Hirofumi
Faculty of Engineering, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino, Tokyo 180-8633, Japan
関連論文
- Performance Evaluation of NPML System in Perpendicular Magnetic Recording
- Bending Toerance of Ferroeectric iquid Crysta with Poymer Was Fastening Pastic Substrates
- Thermal Shock Tolerance of Ferroelectric Liquid Crystal Stabilized by Aligned Polymer Fibers
- Polarization Raman Spectral Microscopy of Polymer Fibers Formed in Ferroelectric Liquid Crystal
- Organic Thin-Film Transistors on a Plastic Substrate with Anodically Oxidized High-Dielectric-Constant Insulators
- Bend-Mode Liquid Crystal Cells Stabilized by Aligned Polymer Walls
- Light-Controllable Spot Luminaires Using a Liquid Crystal Light Shutter and a High-Intensity Discharge Lamp
- Heat-Resistant Liquid Crystal Light Modulator Containing Polymer Network for High-Power Luminaires
- Polymer Alignment Behavior with Molecular Switching of Ferroelectric Liquid Crystal
- Electrically-Controllable Loquid Crystal Polarizing Filter For Eliminating Reflected Light
- Small Liquid Crystal Droplet Formation of Polymer-Dispersed Liquid Crystal under Ultraviolet Light Irradiation without Short Wavelength Component
- Polymer-Stabilized Ferroelectric Liquid Crystal Devices with Grayscale Memory
- Grayscale-Memory Spatial Light Modulator with Polymer-Dispersed Phase-Transition Liquid Crystal
- Polarization Raman Microscopic Study of Molecular Alignment Behavior in Liquid Crystal/Polymer Composite Films
- Liquid Crystal Alignment Control Using Polymer Filament and Polymer Layers Coated on Substrates
- Polymer Wall Formation Using Liquid-Crystal/Polymer Phase Separation Induced on Patterned Polyimide Films
- Self-Restoration by Smectic Layer Structures of Monostable Ferroelectric Liquid Crystal in Flexible Devices
- Light Diffraction of Aligned Polymer Fibers Periodically Dispersed by Phase Separation of Liquid Crystal and Polymer
- Improvement of Characteristics of Organic Thin-Film Transistor with Anodized Gate Insulator by an Electrolyte Solution and Low-Voltage Driving of Liquid Crystal by Organic Thin-Film Transistors
- Rollable Polymer-Stabilized Ferroelectric Liquid Crystal Device Using Thin Plastic Substrates
- Fabrication of Extended Porous Polymer Films for Aligning Nematic Liquid Crystal
- Flexible Grayscale Ferroelectric Liquid Crystal Device Containing Polymer Walls and Networks
- Relationship between Spatial Resolution and Electrooptic Thresholding in Polymer-Dispersed Liquid Crystals
- Fluorinated Polymer Alignment Layers Formed at Low Temperature for Plastic-Substrate-Based Liquid Crystal Devices : Structure and Mechanical and Thermal Properties of Condensed Matter
- Rigid Formation of Aligned Polymer Fiber Network in Ferroelectric Liquid Crystal
- Curved Ferroelectric Liquid Crystal Matrix Displays Driven by Field-Sequential-Color and Active-Matrix Techniques
- Liquid Crystal Display Cells Fabricated on Plastic Substrate Driven by Low-Voltage Organic Thin-Film Transistor with Improved Gate Insulator and Passivation Layer
- Improving the Light Out-Coupling Properties of Inorganic Thin-Film Electroluminescent Devices
- Orientation-Controlled Growth of Pentacene Single Crystal Films on an Alignment Layer Using Liquid Crystal as Solvent
- Photopolymerization-Induced Phase Separation Process of Thin Composite Films of Liquid Crystal and Polymer Fiber Networks
- Relationship of Polymer Molecular Weight and Cure Temperature in Photopolymerization-Induced Phase Separation of Liquid Crystal and Polymer Fiber Networks : Optics and Quantum Electronics
- Smectic Layer Deformation of Ferroelectric Liquid Crystal Sandwiched between Polymer Walls with Anchoring Effects
- New Driving Scheme to Improve Hysteresis Characteristics of Organic Thin Film Transistor-Driven Active-Matrix Organic Light Emitting Diode Display
- Hg(OTf)_2-catalyzed Cycloisomerization of Aryl- and Hetero-substituted 1,3-Dienes
- Anchoring Strength of Thin Aligned-Polymer Films Formed by Liquid Crystalline Monomer
- Infrared- and Visible-Light-Sensitive Spatial Light Modulator Using Pigment-Dispersed Organic Photoconductor
- P-120 Synthetically Useful Reactions Catalyzed by Hg (OTf)_2
- Polarization Raman Spectral Microscopy of Polymer Fibers Formed in Ferroelectric Liquid Crystal
- Analysis of the Influence of Sputtering Damage to Polymer Gate Insulators in Amorphous InGaZnO4 Thin-Film Transistors
- Self-Restoration by Smectic Layer Structures of Monostable Ferroelectric Liquid Crystal in Flexible Devices
- Liquid Crystal Alignment Control Using Polymer Filament and Polymer Layers Coated on Substrates
- Polymer Wall Formation Using Liquid-Crystal/Polymer Phase Separation Induced on Patterned Polyimide Films
- Anchoring Strength of Thin Aligned-Polymer Films Formed by Liquid Crystalline Monomer
- Bend-Mode Liquid Crystal Cells Stabilized by Aligned Polymer Walls
- Organic Thin-Film Transistors on a Plastic Substrate with Anodically Oxidized High-Dielectric-Constant Insulators
- Nematic Liquid Crystal Alignment Behaviors between Crossed Stretched Miropolymer Filaments with Anchoring Effects
- Orientation-Controlled Growth of Pentacene Single Crystal Films on an Alignment Layer Using Liquid Crystal as Solvent
- Liquid Crystal Display Cells Fabricated on Plastic Substrate Driven by Low-Voltage Organic Thin-Film Transistor with Improved Gate Insulator and Passivation Layer
- Improvement of Characteristics of Organic Thin-Film Transistor with Anodized Gate Insulator by an Electrolyte Solution and Low-Voltage Driving of Liquid Crystal by Organic Thin-Film Transistors
- Influence of Oxide Semiconductor Thickness on Thin-Film Transistor Characteristics
- Orientation of a Dip-Coated Bacteriorhodopsin Thin Film Studied by Second Harmonic Generation Interferometry
- Fast Imaging Ellipsometer Using a LiNbO
- Photopolymerization-Induced Phase Separation Process of Thin Composite Films of Liquid Crystal and Polymer Fiber Networks
- Thermal Shock Tolerance of Ferroelectric Liquid Crystal Stabilized by Aligned Polymer Fibers
- Orientation of a Dip-Coated Bacteriorhodopsin Thin Film Studied by Second Harmonic Generation Interferometry (Special Issue : Printed Electronics)
- Concise Synthesis of a Probe Molecule Enabling Analysis and Imaging of Vizantin
- Influence of Substrate Surfaces on Thermal Behavior of Photopolymerization-Induced Phase Separation of Liquid Crystal and Polymer
- Polymer Alignment Behavior with Molecular Switching of Ferroelectric Liquid Crystal