隠れ変数の分布における汎化誤差の解析
スポンサーリンク
概要
- 論文の詳細を見る
混合モデルや隠れマルコフモデル,ベイズネットワークなどに代表される階層モデルが情報科学において広く利用されている.これらのモデルは全て隠れ変数を用いた記述が可能であり,この変数の推定が多くの分野で重要な課題となっている.例えば混合モデルを用いたクラスタリングではデータの発生源となるクラスタを特定するが,そこでは隠れ変数の推定が不可欠である.また時系列解析における系のダイナミクスは隠れマルコフモデルや状態空間モデルの隠れ変数で記述される.しかしながら隠れ変数の推定は実用上多く行われているにもかかわらず,その精度の数理的な性質は未解決である.そこで本論文では隠れ変数の汎化誤差を定式化し,ベイズ推定における漸近解析を行う.従来の分布推定の結果と異なり,データを発生している真のモデルが誤差の収束に影響し,さらに冗長な隠れ変数が存在すると誤差が発散することが示された.
- 2011-02-28
著者
-
山崎 啓介
東京工業大学精密工学研究所
-
山崎 啓介
電気通信大学大学院情報システム学研究科
-
山崎 啓介
東京工業大学大学院総合理工学研究科知能システム科学専攻
-
山崎 啓介
東京工業大学 総合理工学研究科
関連論文
- 特異モデルにおけるモデル選択法の提案
- 隠れマルコフモデルの学習係数について
- 階層型ベイジアンネットワークの確率的複雑さと特異点(ベイジアンネット2 : ポスターセッション)
- 一本の訓練系列から構成されるHMMの事後分布について(脳活動の計測と解析,生命現象の非線形性,一般)
- ベイジアンネットワークの確率的複雑さと代数幾何(統計的学習理論及び一般)
- 混合正規分布におけるベイズ周辺尤度の厳密計算法 (ニューロコンピューティング)
- 一本の訓練系列から構成されるHMMの事後分布について(脳活動の計測と解析,生命現象の非線形性,一般)
- 混合正規分布の特異点の非解析性について(学習理論)
- ニュートン図形を用いた確率的複雑さの解析法(学習理論)
- Algorithm with Newton Diagram for Analyzing Stochastic Complexity (特集:学習理論)
- 混合正規分布におけるべイズ周辺尤度の厳密計算法(機械学習,生物模倣情報処理,機械学習,一般)
- 代理べイズ学習に基づくHMMのためのデータ系列長(機械学習,生物模倣情報処理,機械学習,一般)
- 周辺尤度計算におけるパラメータ空間と隠れ変数空間の比較 (ニューロコンピューティング)
- 高次元圧縮空間の対話的手法による次元縮小(機械学習)
- 完全2部グラフ型ボルツマンマシンの代数幾何
- 完全2部グラフ型ボルツマンマシンの代数幾何
- 混合分布モデルにおける確率的複雑さの解明
- 特異点をもつ推論モデルの学習曲線の確率的計算法
- 特異点を持つ推論モデルの確率的学習精度計算アルゴリズム
- 周辺尤度計算におけるパラメータ空間と隠れ変数空間の比較
- 隠れ変数の分布における汎化誤差の解析
- 隠れマルコフモデルおけるベイズ状態推定とその精度解析(機械学習とその応用)
- 最尤法における潜在変数推定の理論解析(ポスターセッション,第14回情報論的学習理論ワークショップ)
- 冗長な変数がある場合のベイズ潜在変数推定誤差について(統計数理,統計推理,データベース,一般)
- 完全データと不完全データの混合からのラベル推定精度について
- 基本図の線形性に基づくSOVモデルのパラメータ推定(応用)
- 最尤法における潜在変数推定の理論解析
- 完全データと不完全データの混合におけるベイズ潜在変数推定の精度(機械学習一般とその応用)
- 自由エネルギーによる潜在変数推定精度の計算法(第15回情報論的学習理論ワークショップ)
- 交通流の時空図におけるZRPのパラメータ推定と能動学習(第15回情報論的学習理論ワークショップ)
- 完全データと不完全データの混合からのラベル推定精度について