Approximate Solution of Converging Shock Growth in Condensed Media
スポンサーリンク
概要
- 論文の詳細を見る
The exact solution of the approximate differential equation for converging shock propagation has been found for the Gruneisen solids. The effects of the various material properties on the shock convergence phenomena can be discussed by using this explicit and closed-form solution to the problem. The solution of the cylindrical shock convergence problem in aluminum shows that the degree of compression has been suppressed by decreasing the Gruneisen parameter and the nonlinearity parameter. This result indicates the effects of the entropy increase onthe phenomena.
- 社団法人応用物理学会の論文
- 1994-07-15
著者
関連論文
- D315 A NOVEL FLUIDIC MICROMOTOR DRIVEN BY THERMOCAPILLARY FORCE(Micro-scale phenomena)
- Enhanced Interlayer Coupling and Magnetoresistance Ratio in Fe_3Si/FeSi_2 Superlattices
- High-Velocity Carbon Plume Generated by Nd:YAG Laser for Thin Carbon Film Deposition
- Analytical Fourier Transform of Fraunhofer Hologram Pattern of a Wire
- New Method of Tracing Interior Projectile Motion in a Gas Gun by Inline Holographic Velocimetry
- Microheater-Driven Dancing Microbubble
- Simple Method of Calculating Gruneisen Parameter Based on the Shock Hugoniot Data for Solids
- Prediction of C-J state for high explosive based on the initial density dependence of detonation velocity
- Unreacted Shock Compression Curve of Energetic Materials and Modeling of Detonation and Reaction Process
- Fundamental Research of Planetary Aerobrake Technology
- Homoepitaxial Growth of Diamond Single-Phase Thin Films by Pulsed Laser Ablation of Graphite : Surfaces, Interfaces, and Films
- High-Pressure Equation of State for Solids and Solution of the Riemann Problem
- Approximate Solution of Converging Shock Growth in Condensed Media
- An Exact Solution of the Riemann Problem for Solids with the Gruneisen Equation of State
- Droplet-Free Thin Films Prepared by Pulsed Laser Deposition Using a Vane Velocity Filter : Short Note
- Ferromagnetic Iron Silicide Thin Films Prepared by Pulsed-Laser Deposition