non-iid パターンのモデル選択付き学習
スポンサーリンク
概要
- 論文の詳細を見る
神経回路のオンライン学習では、提示されるサンプルが独立且つ同一の分布(i.i.d)から発生することを仮定しなければ正確に学習できない。しかし、一般には逐次的に提示されるサンプルが上記の条件を満たすとは限らない。このようなデータを、神経回路に対して学習させると、過去に記憶した事柄を忘却するという問題が生ずる。この現象はCatastrophic forgettingと呼ばれ、この解決を目指す手法が多く提案されている。その多くは、過去の学習サンプルの一部を新しいサンプルと共に再学習する手法となっている。だが、この再学習には時間がかかるため、即応を要求される領域での利用が難しい。これを解決するため筆者らは、運用時には丸暗記による高速学習を行い、運用を休止している夜間にモデル選択を含む遅い学習をおこなうことで、運用時の見掛け上の学習速度を高速化する手法を提案して来た。だが、このモデルであっても運用時の高速学習時に勾配法による学習法を併用するため、提示サンプルの提示順序よっては忘却を起こし、正確な学習ができない場合が存在した。そのため今回は、Generalized Regression Neural Network(GRNN)を併用することによってこの問題を解決する。さらに従来は夜間に行われていたモデル選択付きの学習を昼間の運用時にも実行できるよう拡張する。
- 2005-03-23
著者
関連論文
- 投機的モデル当てはめによる学習の高速化
- 階層型モジュラーネットワークによる動的環境下での学習の高速化とリソースの軽減(ニューラルネットワーク画像復元及び一般)
- メタ学習による追加学習の高速化
- メタ情報の学習による追加学習の高速化
- 睡眠期間を持つ神経回路による追加学習と素子数削減
- RBFネットワークにおける再学習を必要としない中間細胞併合法
- RBFネットワークにおける再学習を必要としない中間細胞併合法
- 主観的メタ情報を利用した顔画像に対する個人嗜好推定の研究
- 自動車運転における危険状況を模した電動車椅子運転時の視線分布の解析 : 危険予測に基づく運転者モデルの評価に向けて(テーマ関連,顔・人物・ジェスチャ・行動)
- 自動車運転における危険状況を模した電動車椅子運転時の視線分布の解析 : 危険予測に基づく運転者モデルの評価に向けて(テーマ関連,顔・人物・ジェスチャ・行動)
- 動的環境下における人の適応的プランニングの計算モデル化
- 自動車加速時におけるアクセル操作の習熟過程のモデル化と実験的検討
- 全方位画像列を用いた移動立体視による三次元空間のタグ記述化
- 5V-5 神経回路による時系列パターンの追加学習(ニューラルネット・学習,学生セッション,人工知能と認知科学)
- 階層型モジュラーネットワークによる動的環境下での学習の高速化とリソースの軽減
- 有限資源環境下における睡眠期間を導入した追加学習法
- 脳型と呼ばれる情報処理の定式化とその計算アーキテクチャ化を目指して : タスク認識に基づく即応的FPCの試み(NC企画セッション : ニューロハードウェア)
- 脳型と呼ばれる情報処理の定式化とその計算アーキテクチャ化を目指して : タスク認識に基づく即応的FPCの試み(企画セッション : ニューロハードウェア)
- 投機的FilterとWrapperによるオンライン学習の高速化 : 高速次元選択法の検討
- Concept-Drifting環境に適応可能なクラシファイアアンサンブルシステム(一般, 進化・発進の現象とモデル, 一般)
- オンラインデータからの高速変数関係抽出
- Minimal Hyper Basis Function Networks を用いた次元選択付オンライン学習法(パターン認識)
- Minimal Hyper Basis Function Networksを用いた次元選択付オンライン学習法
- 高速情報選択法による多次元データからの規則発見
- 学習を怠る学習機械 : 賭けによる高速学習
- 即応性を付加した追加学習(「脳・認知科学」及び一般)
- モデル選択問題に対する人間の解発見方略のモデル化及びマルチエージェント環境への適用
- 入力領域可変型自己組織化法を用いた独立成分抽出
- non-iid パターンのモデル選択付き学習
- 投機的変数選択法によるオンラインクラス分類問題の高速学習
- 変化検出を要する学習課題における人の行動調査と変化検出モデルの提案(ヒトの行動とモデル,神経ダイナミクス,一般)
- 共変量シフトと追記学習
- 統計的手法と事例ベース手法を併用したスパムフィルタリング(コンテンツ技術,Web情報システム)
- 人間の学習対象変化の検出に関する仮説検証とそのモデル化
- 人間行動に着想を得た突然かつ重大な学習対象変化の検出法(人工知能,認知科学)
- 状況変化に適応可能なクラシファイアアンサンブルシステム(一般セッション6(パターン認識基礎),文字・文書の認識・理解)
- 混合PLSモデルによるオンライン次元縮約
- 複数のクラシファイアを用いた状況変化に対応可能なオンラインスパムフィルタリングシステム(テーマセッション1(テキスト処理・文字列画像処理),文字・文書の認識・理解)
- RBFによる睡眠期間を導入したモデル選択付き追加学習法 : 他の追加学習手法との比較
- ICONIP2004参加報告
- 睡眠期間を導入したモデル選択付き追加学習
- 睡眠期間を導入した追加学習とモデル選択
- 入力領域可変型競合学習による独立成分抽出
- 素子数制限下での連続関数近似のための追加学習法