曲線に関する定性的演算規則
スポンサーリンク
概要
- 論文の詳細を見る
Current qualitative reasoning systems have many problems. One problem is complexity of computation. As qualitative simulation is based on combinations of qualitative values of physical quantities and their constraints, notorious combinatorial explosion occurs easily. Another problem is lack of guidelines for representing and reasoning about spatial curves or surfaces. Such guidelines must be useful when we simulate human reasoning by computers. In this paper, we propose a new qualitative representation of curves to solve these problems. This representation is called "Zero Point Lists (ZPL)". Each ZPL is an ordered list of zero points of several functions (qualitative variables) along an independent parameter s. Often ZPL is extended to keep more information. When signs of two variables are assumed to be equal or opposite in some intervel of s, ZPL is extended to keep the relationships. Though it is straightforward to translate from ZPL notation into conventional sign notation, the former representation requires less branching, because each ZPL corresponds to several qualitative behaviors represented in ordinary sign convention. We define fundamental ZPL operations such as differentiation, addition and multiplication. These operations are useful to estimate qualitative behaviors of a system after observing it several times. These rules are also used to infer behaviors from constraints on the qualitative values of physical quantities.
- 社団法人人工知能学会の論文
- 1990-09-01
著者
関連論文
- 曲線に関する定性的演算規則
- Yoav Shoham : Reasoning about Change Time and Causation from the Standpoint of Artificial Intelligence, MIT Press (1988).
- エージェント同士の知識の推定と更新 (&特集>「記号論理とAI」)
- エージェント指向プログラミングの実現に向けて : 他者の信念の推定法 ( マルチエージェント)
- 全米人工知能会議 AAAI-96 報告
- プレゼンテーションのためのフリーソフトウェア
- 信念推定算法の終助詞選択への適用
- ICMAS '95報告
- Zero-suppressed-BDDによる制約充足問題解法の性質 : 組合せ集合演算による非単調性の解明
- トランザクション論理におけるプログラム変換
- トランザクション論理プログラミングの実装とプランニングへの応用
- マルチエージェント環境における遡行的信念推定アルゴリズム
- トランザクション論理におけるプログラム変換