ガラス化範囲と冷却速度
スポンサーリンク
概要
- 論文の詳細を見る
We have already studied the condition of glass-formation and the glass-formation range of borates, silicates and germanates. In these studies, however, we could not determine precisely the cooling condition which defines the glass-formation range, because the glassy stateis not a stable state, but a sub-stable one. These experiments were made under conditions which were determined for the sake of experimental convenience: namely, 1/80mols of specimen were melted and cooled naturally in a room. Therefore, it is necessary to examine to what extent the results of these experiments are effective in view of the glass structure. In this study experiments were carried out by changing the cooling rate, and the variation in the glass-formation range with various cooling rates was examined. These cooling processes included the followings: quick cooling by water, natural cooling in a room (cf. Curve I in Fig. 1), natural cooling in a furnace (cf. Curve II in Fig. 2) and slow cooling in a furnace controlled by a thermocontroller. These cooling rates are about 3×102, 10, 1.5×10-1 and 1.2×10-3°C/sec, respectively. The amount of molten glass is the same as that in the previous studies; crucibles employed are made of platinum or its alloy, which may have some effect especially in the case of the slow cooling in a furnace.Ternary borate systems have been chosen as the glass-forming system for the convenience of experiment, which have been divided into common systems and exceptional systems. The former include the B-type ternary system as the containing only the oxides of the a-group elements, the PbO-containing ternary system as the one containing both of the oxides of the a-group and the b-group elements, and the B2O3-Bi2O3-PbO system as the one containing only the oxides of the b-group elements. The results are shown in Fig. 1-19. These glass-formation ranges contain various critical lines of vitrification; the limit of the continuity of a network-structure (the AD-line in Fig. 2 and 3), the existing limit of necessary modifier ions for the network-formation (the B2O3-C line in Fig. 2 and 3), and the exchangeable limit of network ions represented by the number of b-group ions connecting B with B in the network-structure (the A1B2, A2B3, … lines in Fig. 8; cf. Table 1). The glass-formation range expressed by the above critical lines generally varies somewhat according to the variation in the cooling rate. Therefore the result of the glass-formation range under an arbitrary cooling condition has no absolute meaning. However, comparing Fig. 4 with Fig. 5, for example, we can see a similar variation in the glass-formation range in both cases. In the one case the modifier ions are not exchanged but the cooling conditions are changed, while in the other the modifier ions are exchanged but the cooling conditions are kept constant. This fact can be explained by assuming the 3-dimensional glass-formation range including the glass stability as shown in Fig. 7. When the modifier ion in the B2O3-PbO-RO system (Fig. 5) is smaller, so that its vitrified system is more unstable, the glass-formation occurs only in the high stability sections. The case is the same when the cooling rate is slower in a more stable vitrified system.We then studied the B2O3-MgO-BaO system (Fig. 9), the B2O3-TiO2-BaO system (Fig. 12), the B2O3-WO3-Li2O systems (Fig. 15) and the B2O3-K2O-Bi2O3 system (Fig. 17) as exceptional ternary systems and discussed the true feature of the anomaly of these systems. In the
- 社団法人日本セラミックス協会の論文
- 1966-02-01
著者
関連論文
- Na_2O-SiO_2-B_2O_3系ガラス繊維の低温強度
- ホウケイ酸ソーダガラスの内部摩擦
- Li_2O・SiO_2ガラスのX線構造解析
- 2PbO・SiO_2 ガラスのX線構造解析
- 2 Na_2O・3 WO_3 ガラスの X 線構造解析
- K_2O・SiO_2 ガラスのX線構造解析
- K_2O・2WO_3ガラスのX線構造解析
- B_2O_3-PbO系およびB_2O_3-SiO_2-Na_2O系ガラスの組成と引張り強度
- メタリン酸塩ガラスの遅れ弾性
- 酸化物系ガラスの転移領域での粘性
- K_2O-B_2O_3系およびKF-B_2O_3系ガラスの粘性挙動
- SiO_2-Na_2O 及び B_2O_3-Na_2O 系ガラスの遅れ弾性
- As-Se 系ガラスの遅れ弾性
- As-S, As-S-I, As-S-TI系ガラスの転移温度での自由体積
- 特集7 : 製銑・製鋼スラグからのガラス繊維の製造技術の開発 : 耐アルカリ性の評価
- 特集7 : 製銑・製鋼スラグ, 3成分系ガラスの熱特性
- ソーダ・ホウ酸ガラスにおける応力に伴う電流変動
- ガラス化範囲と冷却速度
- A10.冷却速度とガラス化範囲(研究発表講演要旨)
- ガラス化条件について
- 3成分系ガラス化範囲-7-b-族元素を含むゲルマネ-ト系
- 3成分系ガラス化範囲-6-b-族元素を含む珪酸塩系
- 90 製銑スラグからの繊維の製造とその強度 : スラグの利用に関する研究 II(高炉設備・スラグ・耐火物, 製銑, 日本鉄鋼協会 第 99 回(春季)講演大会)
- 89 製銑スラグ、3 成分系ガラスの耐アルカリ試験 : スラグの利用に関する研究 I(高炉設備・スラグ・耐火物, 製銑, 日本鉄鋼協会 第 99 回(春季)講演大会)
- 製銑スラグをベ-スとした耐アルカリ性ガラス繊維の製造 (省資源のための新しい生産技術の開発に関する研究-2-)
- アルカリケイ酸塩ガラスの内部摩擦における高温ピークについて
- 酸化物系networkガラスの内部摩擦
- Na_2O-H_2O-P_2O_5系ガラスの内部摩擦
- ZnCl_2ガラスについて
- 3成分系ガラス化範囲-5-b-族元素を含むテルライト系
- 3成分系ガラス化範囲-4-a-族テルライト系
- テルライト系のガラス化範囲について : ガラス化範囲の研究(第4報)
- B_2O_3-GeO_2 系ガラスの性質と構造
- ゲルマネート系のガラス化範囲について : ガラス化範囲の研究(第3報)
- 珪酸塩系のガラス化範囲について : ガラス化範囲の研究(第2報)
- 硼酸ランタン系ガラスの屈折率とAbbe数
- 硼酸塩ガラスの光学的性質
- 水ガラス-アルミン酸ソーダ薬液とセメント, 消石灰
- ガラスの圧痕の有限要素法解析
- 「Li_2O-B_2O_3-GeO_2系ガラスの物性と構造について」に対する討論
- B_2O_3-Sb_2O_3系ガラスの性質と構造
- GeS2系カルコゲナイドガラスについて ガラス化範囲
- 硼酸塩系のガラス化範囲について
- ガラス化条件について