B_2O_3-GeO_2 系ガラスの性質と構造
スポンサーリンク
概要
- 論文の詳細を見る
In glass-forming oxide systems without modifier ions, network structures are not broken anywhere, and these glasses must be different in their properties from usual glasses which contain some modifier components. In the glasses of the GeO2-B2O3 system we measured several properties: the thermal expansion, the deforming temperature, the density, the refractive index, the viscosity, and the infra-red absorption. The results of our measurements are shown in Figs. 1-6 and Fig. 11. We can see, in Figs. 1-4 and Fig. 6a, one or two bending points in every curve showing the relation between the composition and the property. The composition of the first point is about 85 cat.% of B2O3, while that of the second point is about 50 cat.%. The latter point appears similarly in every curve; it is assumed that the reason for the appearance of the latter point is a packing effect of two kinds of balls with different radii.The first point appears clearly in the curve of the expansion coefficient, which resembles that of the SiO2-B2O3 system. Accordingly, it is considered that the appearance of the first point is due to an effect of the 4-coordination structure, which interferes with the thermal expansion effect of the 3-coordination. structure. If it is assumed that the interference of the 4-coordination acts not only on the oxygens connecting with the 4-coordination ion directly (marked _??_ in Fig. 7), but also on the next oxygens beyond B (marked _??_), this effect reaches a maximum at 13.04 cat.% of the 4-coordination component and becomes zero at 42.85 cat.%. We can then represent the expansion coefficient of these systems by the following equations:x=0.0000-0.1304α=αIV⋅x+(1-x)αB-4(γ+2δ)xx=0.1304-0.4285α=αIV⋅x+(1-x)αB-4γx-(1.5-3.5x)δx=0.4285-1.0000α=αIV⋅x+(1-x)(αB-3γ), x=4 cat.% fraction of the 4-coordinate component, α=the expansion coefficient of glass, αIV=the expansion coefficient of the 4-coordinate component, αB=the expansion coefficient of B2O3.B2O3-SiO2 system: γ=2.6, δ=2.9B2O3-GeO2 system: γ=2.53, δ=2.0In connection with above things we considered the problem of boric acid anomaly in the B2O3-R2O system (R=Li, Na, K). According to the above results, a bending point must appear at the constant place (Fig. 8), even though the 4-coordination of B increases continuously with the quantity of R. However, the minimum point of the expansion coefficient of these systems depends on the kind of alkali ion. Therefore, the reason for the increase in the expansion coefficient beyond the minimum point is the decrease in the hole radius of the polygonal ring; this shrinkage is caused by the increase in the 4-coordination structure (cf. Fig. 9 and Table 1). The shrinkage of the hole results from the repulsion of the alkali ion or from its exclusion from an intersticial hole.We then studied the expansion coefficient of the B2O3-GeO2-Na2O system. The results correspond with the calculated values assuming the preferential 4-coordination of B (marked in Fig. 10), and does not correspond with the values assuming that of Ge (marked _??_). The addition of the 4-coordination of Ge causes shrinking of the hole, but it does not cause the repulsion of the alkali ion. Accordingly it is assumed that the increase in the expansion coefficient beyond the minimum point arises from the replusion of the alkali ion.We also studied the
- 社団法人日本セラミックス協会の論文
- 1965-12-01
著者
関連論文
- Na_2O-SiO_2-B_2O_3系ガラス繊維の低温強度
- ホウケイ酸ソーダガラスの内部摩擦
- Li_2O・SiO_2ガラスのX線構造解析
- 2PbO・SiO_2 ガラスのX線構造解析
- 2 Na_2O・3 WO_3 ガラスの X 線構造解析
- K_2O・SiO_2 ガラスのX線構造解析
- K_2O・2WO_3ガラスのX線構造解析
- B_2O_3-PbO系およびB_2O_3-SiO_2-Na_2O系ガラスの組成と引張り強度
- メタリン酸塩ガラスの遅れ弾性
- 酸化物系ガラスの転移領域での粘性
- K_2O-B_2O_3系およびKF-B_2O_3系ガラスの粘性挙動
- SiO_2-Na_2O 及び B_2O_3-Na_2O 系ガラスの遅れ弾性
- As-Se 系ガラスの遅れ弾性
- As-S, As-S-I, As-S-TI系ガラスの転移温度での自由体積
- 特集7 : 製銑・製鋼スラグからのガラス繊維の製造技術の開発 : 耐アルカリ性の評価
- 特集7 : 製銑・製鋼スラグ, 3成分系ガラスの熱特性
- ソーダ・ホウ酸ガラスにおける応力に伴う電流変動
- ガラス化範囲と冷却速度
- A10.冷却速度とガラス化範囲(研究発表講演要旨)
- 弗化物ガラスの研究 (第1報) : BeF2-LiF, NaF, KF系
- ガラス化条件について
- 3成分系ガラス化範囲-7-b-族元素を含むゲルマネ-ト系
- 3成分系ガラス化範囲-6-b-族元素を含む珪酸塩系
- 90 製銑スラグからの繊維の製造とその強度 : スラグの利用に関する研究 II(高炉設備・スラグ・耐火物, 製銑, 日本鉄鋼協会 第 99 回(春季)講演大会)
- 89 製銑スラグ、3 成分系ガラスの耐アルカリ試験 : スラグの利用に関する研究 I(高炉設備・スラグ・耐火物, 製銑, 日本鉄鋼協会 第 99 回(春季)講演大会)
- 製銑スラグをベ-スとした耐アルカリ性ガラス繊維の製造 (省資源のための新しい生産技術の開発に関する研究-2-)
- アルカリケイ酸塩ガラスの内部摩擦における高温ピークについて
- 酸化物系networkガラスの内部摩擦
- Na_2O-H_2O-P_2O_5系ガラスの内部摩擦
- ZnCl_2ガラスについて
- 3成分系ガラス化範囲-5-b-族元素を含むテルライト系
- 3成分系ガラス化範囲-4-a-族テルライト系
- テルライト系のガラス化範囲について : ガラス化範囲の研究(第4報)
- B_2O_3-GeO_2 系ガラスの性質と構造
- ゲルマネート系のガラス化範囲について : ガラス化範囲の研究(第3報)
- 珪酸塩系のガラス化範囲について : ガラス化範囲の研究(第2報)
- 硼酸ランタン系ガラスの屈折率とAbbe数
- 硼酸塩ガラスの光学的性質
- 水ガラス-アルミン酸ソーダ薬液とセメント, 消石灰
- ガラスの圧痕の有限要素法解析
- 「Li_2O-B_2O_3-GeO_2系ガラスの物性と構造について」に対する討論
- B_2O_3-Sb_2O_3系ガラスの性質と構造
- GeS2系カルコゲナイドガラスについて ガラス化範囲
- 硼酸塩系のガラス化範囲について
- ガラス化条件について
- 弗化物ガラスの研究-2-