テルライト系のガラス化範囲について : ガラス化範囲の研究(第4報)
スポンサーリンク
概要
- 論文の詳細を見る
We studied the glass-formation range of tellurite systems containing TeO2. The experiments were made in the same way as in previous reports on the borate, silicate and germanate systems. The crucibles employed were made of Au-alloy containing 15% Pd. Except for TeO2, the Oxides used were of 16 kinds of a-group elements, namely K, Na, Li, Ba, Sr, Ca, Mg, Be, La, Al, Th, Zr, Ti, Ta, Nb and W, and 5 kinds of b-group elements, namely, Tl, Cd, Zn, Pb and Bi. The results of binary and ternary systems which include all the combinations of these oxides are shown in Table 1 and Fig. 1-49 and 42-73, except for the systems with a narrow glass-formation range or none at all, which systems are listed in Table 3.According to Bradys data on the X-ray analysis of TeO2 glass, 4 oxygen atoms are ranged around Te at a distance of 1.95 Å and two other oxygen atoms are ranged at a distance of 2.75 Å. Therefore, the coordination of the Te4+ ion lies in an intermediate state between 4- and 6-coordination. TeO2 itself is not vitrified. In the crystal state of TeO2, the coordination number of Te4+ is 6. If a small amount of a modifier ion is introduced, however, TeO2 may be vitrified. In these tellurite glasses, we consider that the Te-O distance shrinks somewhat; therefore, the 4-coordination of Te4+ becomes more stable than the 6-coordination. On the other hand, there is a series of ions which have no vitrifying range in any binary system with TeO2. It is notable that the values of their ionic radii are within a narrow rage; as the valency of ions increases, the radius range shifts somewhat to the smaller side. These facts can be explained as follows: if a modifier ion has the structure of 6-coordination and if the size of MO6 (M=modifier ion) is nearly the same size as TeO6, the 6-coordination state of Te4+ may be stable.The remarkable features of the glass-formation range of the tellurite system also include the following: (1) the range of modifier ions in the tellurite system is wider than in the borate or the silicate system and (2) there is no immiscible range in the tellurite system. These properties very much resemble those of P2O5 systems. The first one may be explained by the electronegativity (see Table 2). The electronegativity of Te is 2.1, which is the same value as P; therefore, the O-M bond may be ionic except for small and high valent ions. The second property is probably a problem arising from the polymerization power of glass-forming oxides.Because many oxides are classified as modifiers, according to (1), ternary systems of the tellurite are classified largely as A-type (consisting of one glassformer and two modifier components). The hatched area in Fig. 1 shows the expected glass-formation range of the A-type.WO3 cannot be considered to be a modifier component. In the tellurite systems generally, the glass-formation ranges of WO3-containing systems are large very unlike those of borate, silicate, etc. According to Gelsing the coordination number of W6+ is 4 in WO3R2O system (R=alkali ion). However, we consider that the coordination number of W6+ is 6 in the tellurite systems, as in borate, silicate, etc. Most of the actual glass-formation ranges of WO3 are above the A-WO3 line (see Fig. 35-39). In these regions the network structure contains WO3 without a modifier ions. On the contrary, the regions within the AD line contain a network of WO3 with modifier ions.It is difficult to consider that Nb5+ is a network-former of the 4 coordination. The hatched area of Fig. 30-34 consists of two parts. In the one Nb5+ is a modifier, while in the other Nb5+ is a networkformer of 6 coordination. The
- 社団法人日本セラミックス協会の論文
- 1968-05-01
著者
関連論文
- Na_2O-SiO_2-B_2O_3系ガラス繊維の低温強度
- ホウケイ酸ソーダガラスの内部摩擦
- Li_2O・SiO_2ガラスのX線構造解析
- 2PbO・SiO_2 ガラスのX線構造解析
- 2 Na_2O・3 WO_3 ガラスの X 線構造解析
- K_2O・SiO_2 ガラスのX線構造解析
- K_2O・2WO_3ガラスのX線構造解析
- B_2O_3-PbO系およびB_2O_3-SiO_2-Na_2O系ガラスの組成と引張り強度
- メタリン酸塩ガラスの遅れ弾性
- 酸化物系ガラスの転移領域での粘性
- K_2O-B_2O_3系およびKF-B_2O_3系ガラスの粘性挙動
- SiO_2-Na_2O 及び B_2O_3-Na_2O 系ガラスの遅れ弾性
- As-Se 系ガラスの遅れ弾性
- As-S, As-S-I, As-S-TI系ガラスの転移温度での自由体積
- 特集7 : 製銑・製鋼スラグからのガラス繊維の製造技術の開発 : 耐アルカリ性の評価
- 特集7 : 製銑・製鋼スラグ, 3成分系ガラスの熱特性
- ソーダ・ホウ酸ガラスにおける応力に伴う電流変動
- ガラス化範囲と冷却速度
- A10.冷却速度とガラス化範囲(研究発表講演要旨)
- ガラス化条件について
- 3成分系ガラス化範囲-7-b-族元素を含むゲルマネ-ト系
- 3成分系ガラス化範囲-6-b-族元素を含む珪酸塩系
- 90 製銑スラグからの繊維の製造とその強度 : スラグの利用に関する研究 II(高炉設備・スラグ・耐火物, 製銑, 日本鉄鋼協会 第 99 回(春季)講演大会)
- 89 製銑スラグ、3 成分系ガラスの耐アルカリ試験 : スラグの利用に関する研究 I(高炉設備・スラグ・耐火物, 製銑, 日本鉄鋼協会 第 99 回(春季)講演大会)
- 製銑スラグをベ-スとした耐アルカリ性ガラス繊維の製造 (省資源のための新しい生産技術の開発に関する研究-2-)
- アルカリケイ酸塩ガラスの内部摩擦における高温ピークについて
- 酸化物系networkガラスの内部摩擦
- Na_2O-H_2O-P_2O_5系ガラスの内部摩擦
- ZnCl_2ガラスについて
- 3成分系ガラス化範囲-5-b-族元素を含むテルライト系
- 3成分系ガラス化範囲-4-a-族テルライト系
- テルライト系のガラス化範囲について : ガラス化範囲の研究(第4報)
- B_2O_3-GeO_2 系ガラスの性質と構造
- ゲルマネート系のガラス化範囲について : ガラス化範囲の研究(第3報)
- 珪酸塩系のガラス化範囲について : ガラス化範囲の研究(第2報)
- 硼酸ランタン系ガラスの屈折率とAbbe数
- 硼酸塩ガラスの光学的性質
- 水ガラス-アルミン酸ソーダ薬液とセメント, 消石灰
- ガラスの圧痕の有限要素法解析
- 「Li_2O-B_2O_3-GeO_2系ガラスの物性と構造について」に対する討論
- B_2O_3-Sb_2O_3系ガラスの性質と構造
- GeS2系カルコゲナイドガラスについて ガラス化範囲
- 硼酸塩系のガラス化範囲について
- ガラス化条件について