Volume-Dependent Irreducible Cluster Sums and Phase Transition of Lattice Gases
スポンサーリンク
概要
- 論文の詳細を見る
The exact expressions for the volume-dependent irreducible cluster sums p. withk@ 7 for the one-dimensional, the two-dimensional square and the three-dimensionalsimple cubic lattice gas and with kg4 for the two-dimensional triangular lattice gas,with nearest-neighbour interactior?s, are obtained. Graphs expressing the volumedependence of p. / p )?' in the case of attractive interaction are described, where p 5." isthe limit of 73.. for infinite volume. By the use of these results, the phase transition(condensation) of the lattice gases are discussed.
- 社団法人日本物理学会の論文
- 1992-05-15
著者
-
Ikeda Kazuyosi
Department Of Methematical Sciences Faculty Of Engineering Osaka University
-
Ikeda Kazuyosi
Department Of Applied Physics Faculty Of Engineering Osaka University
-
Nisizima Kunisuke
Department Of Methematical Sciences Faculty Of Engineering Osaka University
-
Nisizima Kunisuke
Department Of Applied Physics Faculty Of Engineering Osaka University
関連論文
- Statistical Mechanics of One-Dimensional Systems. II : Multicomponent Gas with Intermolecular Potentials of Infinite Range and of Infinitesimal Depth
- Statistical Mechanics of One-Dimensional Systems.I : Phase Transition of a van der Waals Gas
- Statistical Mechanics of One-Dimensional Systems. III : Multicomponent Gas with Kac's Potential
- Statistical-Mechanical Theory of Osmotic Pressure of One-Dimensional Multicomponent Systems.I.Expansion in Terms of the Molar Fractions of the Solutes
- Formal Diagrams Derived from the Prototypes of Eight or Less Points
- Statistical-Mechanical Theory of One-Dimensional Gases with Short-Range and Long-Range Intermolecular Forces.IV.Phase Transitions at Finite Temperatures in the Case of Attractive Short-Range Interaction
- Cluster Sums for Lattice Gases with Second Nearest Neighbour Interactions.II.One-Dimensional Lattice
- On the Theory of Isothermal-Isobaric Ensemble. II : Imperfect Gases and Condensation
- Volume-Dependent Cluster Sums for Lattice Gases. I : Calculation of the Temperley Coefficients
- Generalized Theory of Condensing Systems. VII : An Imperfect Gas Obeying the Perfect-Gas Law in the Gaseous State
- On the Yang-Lee Distribution of Zeros for a Gas Obeying van der Waals' Equation of State. III : Calculations for Low Temperatures
- Volume-Dependent Cluster Sums for Lattice Gases. IV : Behaviour of the Cluster Sums
- Statistical-Mechanical Theory of Osmotic Pressure of One-Dimensional Multicomponent Systems. : II. Expansion in Terms of the Relative Molarities of the Solutes
- Thermodynamical Behaviour of Liquid Water near the Triple Point
- Statistical-Mechanical Theory of Osmotic Pressure of One-Dimensional Multicomponent Systems. III. : Solution Immersed in a Very Large Bath of Pure Solvent
- Distribution of Zeros and the Equation of State. II : Phase Transitions and Singularities in the Case of Circular Distribution
- Statistical-Mechanical Theory of One-Dimensional Gases with Short-Range and Long-Range Intermolecular Forces.III.Phase Transitions at Finite Temperatures in the Case of Repulsive Short-Range Interaction
- Irreducible Cluster Sums and the Virial Coefficients for Lattice Gases
- Cluster Sums for Lattice Gases with Second Nearest Neighbour Interactions.III.Three-Dimensional Simple Cubic Lattice
- Volume-Dependent Cluster Sums and Phase Transition of the Two-Dimensional Triangular Lattice Gas
- Negative Thermal Expansion of the One-Dimensional Lattice Gas with Hard-Core Nearest-Neighbor and Next-Nearest-Neighbor Interactions : Condensed Matter and Statistical Physics
- Phase Transitions of Lattice Gases : Satisfaction of the G-Condition : Condensed Matter and Statistical Physics
- A Generalized Evolution Criterion in Nonequilibrium Convective Systems
- On the Yang-Lee Distribution of Zeros for a Gas Obeying van der Waals' Equation of State. I : Fundamental Concepts and the Limit of Vanishing Attraction
- Cluster Sums for Lattice Gases with Second Nearest Neighbour Interactions.I.Two-Dimensional Square Lattice
- On the Theory of Isothermal-Isobaric Ensemble. I : Mathematical Treatment of the Partition Function
- Distribution of Zeros and the Equation of State. III : Cluster Series, the Ideal Fermi-Dirac Gas and Other Problems
- Generalized Theory of Condensing Systems. VI : Examples of Systems Satisfying the G-Condition
- Statistical-Mechanical Theory of One-Dimensional Gases with Short-Range and Long-Range Intermolecular Forces.I.Equation of State and the Thermodynamic Functions
- Note on the One-Dimensional Model Describing Liquid Water : Determination of the Interaction Constants
- Generalized Theory of Condensing Systems. II : Description in Terms of Irreducible Cluster Integrals
- Volume-Dependent Irreducible Cluster Sums and Phase Transition of Lattice Gases
- Generalized Theory of Condensing Systems. III : Uniform Convergence of Thermodynamic Functions
- Distribution of Zeros and the Equation of State. I : Fundamental Relations and a Theorem on a Cauchy-Type Integral
- Statistical-Mechanical Theory of One-Dimensional Gases with Short-Range and Long-Range Intermolecular Forces.V.Intersection and Inversion of Isotherms of the Water Type
- Volume-Dependent Cluster Sums for Lattice Gases. III : Patterns of Seven or Eight Particles and Expressions for the Cluster Sums
- Generalized Theory of Condensing Systems. V : Some Remarks on the Validity of the G-Condition
- Statistical Mechanics of One-Dimensional Multicomponent Gases of Molecules with Hard Cores and Weak Long-Range Interactions
- Volume-Dependent Cluster Sums for Lattice Gases. II : Prototypes of Seven or Eight Points
- Negative Thermal Expansion of the One-Dimensional Lattice Gas with Next-Nearest-Neighbor Interaction