Thermodynamics of Zirconium Deoxidation Equilibrium in Liquid Iron by EMF Measurements
スポンサーリンク
概要
- 論文の詳細を見る
Thermodynamics of Zr deoxidation equilibrium in liquid iron has been studied at 1873 K by using ZrO2–9mol%MgO and mullite (3Al2O3·2SiO2) electrolytes coupled with the quantitative alalysis of soluble Zr and insoluble Zr as ZrO2 by using a potentiostatic electronic extraction method. The soluble O content for a given soluble Zr content is lower than the previously reported values in the plot of soluble O vs. soluble Zr contents, and the oxygen activity for a given soluble Zr content is higher than the previously reported values. The free energy change of solid Zr dissolution into iron melt: Zr(s)=Zr at 1873 K is obtained as ΔG°=−153±10 kJ. The interaction coefficients for eOZr, rOZr and rOZr,O are estimated as −70±15, 901±131 and 10300±1500, respectively. However, the following interaction coefficients are represented by using a continuous function of logarithms of X, where X=[%sol.Zr]+5.7[%sol.O]+17.1[%sol.Zr]·[%sol.O]/(2[%sol.Zr]+5.7[%sol.O]):eOZr=−3.70−2.20 ln X−2.07(ln X)2+(ln X)3rOZr=dY/dX={−0.33+1.87 ln X+3.01(ln X)2}/XrOZr,O<11.4rOZr={−3.72+21.4 ln X+34.3(ln X)2}/X
- 社団法人 日本鉄鋼協会の論文
- 2008-09-15
著者
-
Inoue Ryo
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
-
Ariyama Tatsuro
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
-
Suito Hideaki
Tohoku Univ. Miyagiken Jpn
-
Ariyama Tatsuro
Institute Of Maltidisciplinary Research For Advanced Materials Tohoku University
-
Ariyama Tatsuro
Steel Research Laboratory Jfe Steel Corp.
-
Suito Hideaki
Institute Of Multidisciplinary Research For Advanced Materials (imram) Tohoku University
-
Inoue Ryo
Institute For Advanced Materials Processing Tohoku University
-
Ariyama Tatsuro
Institute Of Multidisciplinary Research For Advanced Materials Tohoku University
-
SUITO Hideaki
Professor Emeritus, Tohoku University
-
Suito Hideaki
Professor Emeritus Tohoku Univ.
-
Suito Hideaki
Professor Emeritus Tohoku University
-
Inoue Ryo
Institute Of Multidisciplinary Research For Advanced Materials (imram) Tohoku University
-
Inoue Ryo
Inst. Of Multidisciplinary Res. For Advanced Materials Tohoku Univ.
関連論文
- Enhancement of Reactivity of Carbon Iron Ore Composite Using Redox Reaction of Iron Oxide Powder
- Influences of Physical Properties of Particle in Discrete Element Method on Descending Phenomena and Stress Distribution in Blast Furnace
- Transient Behavior of Burden Descending and Influence of Cohesive Zone Shape on Solid Flow and Stress Distribution in Blast Furnace by Discrete Element Method
- Simultaneous Three-dimensional Analysis of Gas–Solid Flow in Blast Furnace by Combining Discrete Element Method and Computational Fluid Dynamics
- Dynamic Analysis of Gas and Solid Flows in Blast Furnace with Shaft Gas Injection by Hybrid Model of DEM-CFD
- Effect of Oxide Catalyst on Heterogeneous Nucleation in Fe-10mass%Ni Alloys
- Quantitative Analysis of Total and Insoluble Elements and Inclusion Composition in Metal by Laser Ablation ICP-MS Method
- Thermodynamics on Control of Inclusions Composition in Ultra-clean Steels
- Dissolution Behavior and Stabilization of Fluorine in Secondary Refining Slags
- Influence of Gypsum Addition and Hydrothermal Treatment on Dissolution Behavior of Fluorine in Hot Metal Pretreatment Slags
- Mechanism of Dephosphorization with CaO-SiO_2-Fe_tO Slags Containing Mesoscopic Scale 2CaO・SiO_2 Particles
- Behavior of Phosphorous Transfer from CaO-Fe_tO-P_2O_5(-SiO_2) Slag to CaO Particles
- Fluorine-containing Mineral Phases in Ironmaking and Steelmaking Slags and Their Solubilities in Aqueous Solution
- Characteristics of Solid Flow and Stress Distribution Including Asymmetric Phenomena in Blast Furnace Analyzed by Discrete Element Method
- Optimization of Physical Parameters of Discrete Element Method for Blast Furnace and Its Application to the Analysis on Solid Motion around Raceway
- Improvement of Reactivity of Carbon Iron Ore Composite with Biomass Char for Blast Furnace
- Reaction Model and Reduction Behavior of Carbon Iron Ore Composite in Blast Furnace
- Production of Mn-Fe Alloy from Slag Generated in Mn-removal Treatment of Molten Cast Iron
- Phosphorous Partition between 2CaO・SiO_2 Particles and CaO-SiO_2-Fe_tO Slags
- Thermodynamics of Zirconium Deoxidation Equilibrium in Liquid Iron by EMF Measurements
- Size Distribution of Deoxidation Products with Ti, Pr and Ti/Pr in Fe-10mass%Ni Alloy
- Nitride Precipitation on Particles in Fe-10mass%Ni Alloy Deoxidized with Ti, M(M=Mg, Zr and Ce) and Ti/M
- Grain-growth-inhibiting Effects of TiC and ZrC Precipitates in Fe-0.15-0.30mass%C Alloy
- Characteristics of Fine Oxide Particles Produced by Ti/M (M=Mg and Zr) Complex Deoxidation in Fe-10mass%Ni Alloy
- Effect of TiN Precipitates on Austenite Grain Size in Fe-1.5%Mn-0.12%Ti-Si(
- Effect of Oxide Particles on δ/γ Transformation and Austenite Grain Growth in Fe-0.05-0.30%C-1.0%Mn-1.0%Ni Alloy
- Development of Coating Granulation Process at Commercial Sintering Plant for Improving Productivity and Reducibility
- Influences of Physical Properties of Particle in Discrete Element Method on Descending Phenomena and Stress Distribution in Blast Furnace
- Transient Behavior of Burden Descending and Influence of Cohesive Zone Shape on Solid Flow and Stress Distribution in Blast Furnace by Discrete Element Method
- Recent Progress and Future Perspective on Mathematical Modeling of Blast Furnace
- Enhancement of Reactivity of Carbon Iron Ore Composite Using Redox Reaction of Iron Oxide Powder
- Catalytic Effect of Fe, CaO and Molten Oxide on the Gasification Reaction of Coke and Biomass Char
- Influence of Blast Furnace Inner Volume on Solid Flow and Stress Distribution by Three Dimensional Discrete Element Method
- Dynamic Analysis of Gas and Solid Flows in Blast Furnace with Shaft Gas Injection by Hybrid Model of DEM-CFD
- Thermodynamic Consideration on the Absorption Properties of Carbon Dioxide to Basic Oxide
- Simultaneous Determination of the Composition and Size of Oxide Particles in Solid Materials by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry
- Design of Innovative Blast Furnace for Minimizing CO_2 Emission Based on Optimization of Solid Fuel Injection and Top Gas Recycling
- Simultaneous Three-dimensional Analysis of Gas-Solid Flow in Blast Furnace by Combining Discrete Element Method and Computational Fluid Dynamics
- Optimization of Ironmaking Process for Reducing CO_2 Emissions in the Integrated Steel Works
- Thermodynamic Assessment of Hot Metal and Steel Dephosphorization with MnO-containing BOF Slags
- Thermodynamic Assessment of Manganese Distribution in Hot Metal and Steel
- Hydration of Crystallized Lime in BOF Slags
- Preface to the Special Issue on "Recent Progress in Modeling, Data-processing and Control of Ironmaking Process"
- CO_2 Absorption and Desorption Abilities of Li_2O-TiO_2 Compounds
- Penetration Effect of Injected Gas at Shaft Gas Injection in Blast Furnace Analyzed by Hybrid Model of DEM-CFD
- Behavior of Vanadium and Niobium during Hot Metal Dephosphorization by CaO-SiO_2-Fe_tO Slag
- Influence of Oxide Particles and Residual Elements on Microstructure and Toughness in the Heat-Affected Zone of Low-Carbon Steel Deoxidized with Ti and Zr
- Effects of Soluble Ti and Zr Content and Austenite Grain Size on Microstructure of the Simulated Heat Affected Zone in Fe-C-Mn-Si Alloy
- Application of Laser Ablation ICP Mass Spectrometry for Analysis of Oxide Particles on Cross Section of Alloys and Steels
- Wettability Model Considering Three-Phase Interfacial Energetics in Particle Method
- Numerical Simulation of Dripping Behavior of Droplet in Packed Bed Using Particle Method
- Extraction of Nonmetallic Inclusion Particles Containing MgO from Steel
- Effects of the Seaweed Bed Construction Using the Mixture of Steelmaking Slag and Dredged Soil on the Growth of Seaweeds
- Evaluation of Coke Mixed Charging Based on Packed Bed Structure and Gas Permeability Changes in Blast Furnace by DEM-CFD Model
- Effect of Multi-phase Oxide Particles on TiN Crystallization and Solidification Structure in Ti-Added Ferritic Stainless Steel
- Experimental Study and Atomic Level Description of Adsorption Process of CO_2 on Doped Alkaline Earth Oxides
- DEM-CFD Model Considering Softening Behavior of Ore Particles in Cohesive Zone and Gas Flow Analysis at Low Coke Rate in Blast Furnace
- Stress Field and Solid Flow Analysis of Coke Packed Bed in Blast Furnace Based on DEM
- Decrease of Sulfide in Enclosed Coastal Sea by Using Steelmaking Slag
- Effect of High Reactivity Coke for Mixed Charge in Ore Layer on Reaction Behavior of Each Particle in Blast Furnace
- Effects of Operation Condition and Casting Strategy on Drainage Efficiency of the Blast Furnace Hearth
- Influence of Physical Properties of Melt on Liquid Dripping in Packed Bed Analyzed by MPS Method
- Applicability of Nonaqueous Electrolytes for Electrolytic Extraction of Inclusion Particles Containing Zr, Ti, and Ce
- Numerical Simulation of Dripping Behavior of Droplet in Packed Bed Using Particle Method
- Evaluation of Coke Mixed Charging Based on Packed Bed Structure and Gas Permeability Changes in Blast Furnace by DEM-CFD Model
- Influence of Physical Properties of Melt on Liquid Dripping in Packed Bed Analyzed by MPS Method
- Effect of Multi-phase Oxide Particles on TiN Crystallization and Solidification Structure in Ti-Added Ferritic Stainless Steel