Evaluation of Coke Mixed Charging Based on Packed Bed Structure and Gas Permeability Changes in Blast Furnace by DEM-CFD Model
スポンサーリンク
概要
- 論文の詳細を見る
Low reducing agent operation of the blast furnace has an important role in mitigating carbon dioxide emissions in the steel works. Low reducing agent operation results in a low coke rate in the blast furnace. In low coke rate operation, the permeability in the blast furnace is considered to change remarkably due to the increase in the ore-to-coke (O/C) ratio. Charging methods based on conventional layered charging should be improved to a new method such as coke mixed charging. In this study, a DEM-CFD model considering the softening behavior of ore particles in the cohesive zone was applied to evaluate the gas flow in low coke rate operation. First, the softening melting test was simulated by the overlapping of particles in DEM. The layer structure and void fraction distribution in the blast furnace were calculated for normal coke rate and low coke rate operation by DEM. Second, gas flow behavior was analyzed by the DEM-CFD model, focusing on the cohesive zone. From the results, it was estimated that the gas flow was influenced by the coke slit structure in the cohesive zone and the permeability of ore layers mixed with coke particles. Under the normal coke rate of 350 kg/t, coke mixed charging has little effect on permeability through the thin coke slit. However, in low coke rate operation, coke mixing can improve the permeability of the cohesive zone.
著者
-
Ariyama Tatsuro
Institute Of Maltidisciplinary Research For Advanced Materials Tohoku University
-
Inoue Ryo
Institute For Advanced Materials Processing Tohoku University
-
Natsui Shungo
Institute Of Multidisciplinary Research For Advanced Materials (imram) Tohoku University
-
Kon Tatsuya
Institute Of Multidisciplinary Research For Advanced Materials (imram) Tohoku University
-
UEDA Shigeru
Institute of Industrial Science, The University of Tokyo
-
NATSUI Shungo
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
-
KUROSAWA Hiroyuki
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
-
MATSUHASHI Shouhei
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
-
KON Tatsuya
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
関連論文
- Quantitative Analysis of Total and Insoluble Elements and Inclusion Composition in Metal by Laser Ablation ICP-MS Method
- Thermodynamics on Control of Inclusions Composition in Ultra-clean Steels
- Dissolution Behavior and Stabilization of Fluorine in Secondary Refining Slags
- Influence of Gypsum Addition and Hydrothermal Treatment on Dissolution Behavior of Fluorine in Hot Metal Pretreatment Slags
- Mechanism of Dephosphorization with CaO-SiO_2-Fe_tO Slags Containing Mesoscopic Scale 2CaO・SiO_2 Particles
- Behavior of Phosphorous Transfer from CaO-Fe_tO-P_2O_5(-SiO_2) Slag to CaO Particles
- Fluorine-containing Mineral Phases in Ironmaking and Steelmaking Slags and Their Solubilities in Aqueous Solution
- Distributions of Sn, Sb, and Bi between Ag-Pb Alloy and PbO Based Melt at 1273K
- Characteristics of Solid Flow and Stress Distribution Including Asymmetric Phenomena in Blast Furnace Analyzed by Discrete Element Method
- Optimization of Physical Parameters of Discrete Element Method for Blast Furnace and Its Application to the Analysis on Solid Motion around Raceway
- Improvement of Reactivity of Carbon Iron Ore Composite with Biomass Char for Blast Furnace
- Reaction Model and Reduction Behavior of Carbon Iron Ore Composite in Blast Furnace
- Infrared Emission Spectra of CaF_2-CaO-SiO_2 Melt
- Phasediagram study on the Al_2O_3-CaO-TiO_2 system
- Production of Mn-Fe Alloy from Slag Generated in Mn-removal Treatment of Molten Cast Iron
- Phosphorous Partition between 2CaO・SiO_2 Particles and CaO-SiO_2-Fe_tO Slags
- Thermodynamics of Zirconium Deoxidation Equilibrium in Liquid Iron by EMF Measurements
- Size Distribution of Deoxidation Products with Ti, Pr and Ti/Pr in Fe-10mass%Ni Alloy
- Grain-growth-inhibiting Effects of TiC and ZrC Precipitates in Fe-0.15-0.30mass%C Alloy
- Effect of TiN Precipitates on Austenite Grain Size in Fe-1.5%Mn-0.12%Ti-Si(
- Transient Behavior of Burden Descending and Influence of Cohesive Zone Shape on Solid Flow and Stress Distribution in Blast Furnace by Discrete Element Method
- Recent Progress and Future Perspective on Mathematical Modeling of Blast Furnace
- Enhancement of Reactivity of Carbon Iron Ore Composite Using Redox Reaction of Iron Oxide Powder
- Catalytic Effect of Fe, CaO and Molten Oxide on the Gasification Reaction of Coke and Biomass Char
- Influence of Blast Furnace Inner Volume on Solid Flow and Stress Distribution by Three Dimensional Discrete Element Method
- Dynamic Analysis of Gas and Solid Flows in Blast Furnace with Shaft Gas Injection by Hybrid Model of DEM-CFD
- Thermodynamic Consideration on the Absorption Properties of Carbon Dioxide to Basic Oxide
- Simultaneous Determination of the Composition and Size of Oxide Particles in Solid Materials by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry
- Activity Coefficient of AgO_ in PbO-NaO_ and PbO-CaO Melts at 1273K
- Thermodynamic Properties of Selenium in Ag-Pb Alloy and Lead Oxide Phases at 1273K
- Simultaneous Three-dimensional Analysis of Gas-Solid Flow in Blast Furnace by Combining Discrete Element Method and Computational Fluid Dynamics
- Optimization of Ironmaking Process for Reducing CO_2 Emissions in the Integrated Steel Works
- Thermodynamic Assessment of Hot Metal and Steel Dephosphorization with MnO-containing BOF Slags
- Thermodynamic Assessment of Manganese Distribution in Hot Metal and Steel
- Hydration of Crystallized Lime in BOF Slags
- Preface to the Special Issue on "Recent Progress in Modeling, Data-processing and Control of Ironmaking Process"
- CO_2 Absorption and Desorption Abilities of Li_2O-TiO_2 Compounds
- Penetration Effect of Injected Gas at Shaft Gas Injection in Blast Furnace Analyzed by Hybrid Model of DEM-CFD
- Behavior of Vanadium and Niobium during Hot Metal Dephosphorization by CaO-SiO_2-Fe_tO Slag
- Influence of Oxide Particles and Residual Elements on Microstructure and Toughness in the Heat-Affected Zone of Low-Carbon Steel Deoxidized with Ti and Zr
- Application of Laser Ablation ICP Mass Spectrometry for Analysis of Oxide Particles on Cross Section of Alloys and Steels
- Wettability Model Considering Three-Phase Interfacial Energetics in Particle Method
- Numerical Simulation of Dripping Behavior of Droplet in Packed Bed Using Particle Method
- Extraction of Nonmetallic Inclusion Particles Containing MgO from Steel
- Effects of the Seaweed Bed Construction Using the Mixture of Steelmaking Slag and Dredged Soil on the Growth of Seaweeds
- Evaluation of Coke Mixed Charging Based on Packed Bed Structure and Gas Permeability Changes in Blast Furnace by DEM-CFD Model
- Effect of Multi-phase Oxide Particles on TiN Crystallization and Solidification Structure in Ti-Added Ferritic Stainless Steel
- Experimental Study and Atomic Level Description of Adsorption Process of CO_2 on Doped Alkaline Earth Oxides
- DEM-CFD Model Considering Softening Behavior of Ore Particles in Cohesive Zone and Gas Flow Analysis at Low Coke Rate in Blast Furnace
- Decrease of Sulfide in Enclosed Coastal Sea by Using Steelmaking Slag
- Effect of High Reactivity Coke for Mixed Charge in Ore Layer on Reaction Behavior of Each Particle in Blast Furnace
- Influence of Physical Properties of Melt on Liquid Dripping in Packed Bed Analyzed by MPS Method
- Applicability of Nonaqueous Electrolytes for Electrolytic Extraction of Inclusion Particles Containing Zr, Ti, and Ce
- Numerical Simulation of Dripping Behavior of Droplet in Packed Bed Using Particle Method
- Evaluation of Coke Mixed Charging Based on Packed Bed Structure and Gas Permeability Changes in Blast Furnace by DEM-CFD Model
- Recent Progress on Advanced Blast Furnace Mathematical Models Based on Discrete Method
- Influence of Physical Properties of Melt on Liquid Dripping in Packed Bed Analyzed by MPS Method
- Effect of Multi-phase Oxide Particles on TiN Crystallization and Solidification Structure in Ti-Added Ferritic Stainless Steel