Effect of Multi-phase Oxide Particles on TiN Crystallization and Solidification Structure in Ti-Added Ferritic Stainless Steel
スポンサーリンク
概要
- 論文の詳細を見る
The effect of TiN crystallization on the solidification structure of Ti-added ferritic stainless steel were studied in Ti/Mg, Ti/Ca, Ti/Mg/Al, Ti/Ca/Al, Al/Ti/Ca and Ti/Mg(Ca)/Ca(Mg) deoxidations carried out at 1600°C using an Fe–17.5(11)%Cr–0.25%Mn–0.20%Si–0.2 to 0.3%Ti–0.01%C–0.003 to 0.04% N alloy on a mass percent basis. Compositional analysis of the oxide particles and TiN layers generated during the deoxidation using scanning electron microscopy in conjunction with an electron probe microanalyzer, coupled with observation of the morphology and homogeneity of complex TiN+oxide particles, revealed that the TiN layers were formed through the postulated mechanism of the co-crystallization of TiN and oxide. Ti/Mg and Ti/Mg/Al deoxidations performed in an Al2O3 crucible yielded a very fine solidification structure at high N contents (>200 ppm) because of the presence of complex particles consisting of the TiN layer with a small amount of oxide phases. In the Ti/Ca, Ti/Ca/Al and Al/Ti/Ca deoxidations using an Al2O3 crucible, a relatively fine solidification structure was observed when a low oxide content was present in the TiN layer. Ti/Ca/A and Al/Ti/Ca deoxidations carried out using an MgO crucible in the presence or absence of MgO–CaO–Al2O3 slag gave rise to solidification structures that were relatively finer in comparison with those obtained using an Al2O3 crucible. Very fine structures were observed at low N contents (36 to 80 ppm) in the Ti/Mg/Ca and Ti/Ca/Mg deoxidations using an Al2O3 crucible because of the effective surface composition of the oxide particles for δ-phase solidification.
著者
-
KIM Sun
Stainless Steel Department, Technical Research Laboratory, Pohang Steel Company
-
Inoue Ryo
Institute For Advanced Materials Processing Tohoku University
-
Suito Hideaki
Professor Emeritus Tohoku Univ.
-
Kim Sun
Stainless Steel Research Group, Technical Research Laboratories POSCO
関連論文
- Quantitative Analysis of Total and Insoluble Elements and Inclusion Composition in Metal by Laser Ablation ICP-MS Method
- Diffusional Solidification Behavior in 304 Stainless Steel
- Thermodynamics on Control of Inclusions Composition in Ultra-clean Steels
- Dissolution Behavior and Stabilization of Fluorine in Secondary Refining Slags
- Influence of Gypsum Addition and Hydrothermal Treatment on Dissolution Behavior of Fluorine in Hot Metal Pretreatment Slags
- Mechanism of Dephosphorization with CaO-SiO_2-Fe_tO Slags Containing Mesoscopic Scale 2CaO・SiO_2 Particles
- Behavior of Phosphorous Transfer from CaO-Fe_tO-P_2O_5(-SiO_2) Slag to CaO Particles
- Fluorine-containing Mineral Phases in Ironmaking and Steelmaking Slags and Their Solubilities in Aqueous Solution
- Characteristics of Solid Flow and Stress Distribution Including Asymmetric Phenomena in Blast Furnace Analyzed by Discrete Element Method
- Optimization of Physical Parameters of Discrete Element Method for Blast Furnace and Its Application to the Analysis on Solid Motion around Raceway
- Improvement of Reactivity of Carbon Iron Ore Composite with Biomass Char for Blast Furnace
- Reaction Model and Reduction Behavior of Carbon Iron Ore Composite in Blast Furnace
- Production of Mn-Fe Alloy from Slag Generated in Mn-removal Treatment of Molten Cast Iron
- Phosphorous Partition between 2CaO・SiO_2 Particles and CaO-SiO_2-Fe_tO Slags
- Thermodynamics of Zirconium Deoxidation Equilibrium in Liquid Iron by EMF Measurements
- Size Distribution of Deoxidation Products with Ti, Pr and Ti/Pr in Fe-10mass%Ni Alloy
- Grain-growth-inhibiting Effects of TiC and ZrC Precipitates in Fe-0.15-0.30mass%C Alloy
- Effect of TiN Precipitates on Austenite Grain Size in Fe-1.5%Mn-0.12%Ti-Si(
- Transient Behavior of Burden Descending and Influence of Cohesive Zone Shape on Solid Flow and Stress Distribution in Blast Furnace by Discrete Element Method
- Enhancement of Reactivity of Carbon Iron Ore Composite Using Redox Reaction of Iron Oxide Powder
- Catalytic Effect of Fe, CaO and Molten Oxide on the Gasification Reaction of Coke and Biomass Char
- Influence of Blast Furnace Inner Volume on Solid Flow and Stress Distribution by Three Dimensional Discrete Element Method
- Dynamic Analysis of Gas and Solid Flows in Blast Furnace with Shaft Gas Injection by Hybrid Model of DEM-CFD
- Thermodynamic Consideration on the Absorption Properties of Carbon Dioxide to Basic Oxide
- Simultaneous Determination of the Composition and Size of Oxide Particles in Solid Materials by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry
- Simultaneous Three-dimensional Analysis of Gas-Solid Flow in Blast Furnace by Combining Discrete Element Method and Computational Fluid Dynamics
- Thermodynamic Assessment of Hot Metal and Steel Dephosphorization with MnO-containing BOF Slags
- Thermodynamic Assessment of Manganese Distribution in Hot Metal and Steel
- Hydration of Crystallized Lime in BOF Slags
- CO_2 Absorption and Desorption Abilities of Li_2O-TiO_2 Compounds
- Penetration Effect of Injected Gas at Shaft Gas Injection in Blast Furnace Analyzed by Hybrid Model of DEM-CFD
- Behavior of Vanadium and Niobium during Hot Metal Dephosphorization by CaO-SiO_2-Fe_tO Slag
- Influence of Oxide Particles and Residual Elements on Microstructure and Toughness in the Heat-Affected Zone of Low-Carbon Steel Deoxidized with Ti and Zr
- Application of Laser Ablation ICP Mass Spectrometry for Analysis of Oxide Particles on Cross Section of Alloys and Steels
- Wettability Model Considering Three-Phase Interfacial Energetics in Particle Method
- Numerical Simulation of Dripping Behavior of Droplet in Packed Bed Using Particle Method
- Extraction of Nonmetallic Inclusion Particles Containing MgO from Steel
- Effects of the Seaweed Bed Construction Using the Mixture of Steelmaking Slag and Dredged Soil on the Growth of Seaweeds
- Evaluation of Coke Mixed Charging Based on Packed Bed Structure and Gas Permeability Changes in Blast Furnace by DEM-CFD Model
- Effect of Multi-phase Oxide Particles on TiN Crystallization and Solidification Structure in Ti-Added Ferritic Stainless Steel
- Experimental Study and Atomic Level Description of Adsorption Process of CO_2 on Doped Alkaline Earth Oxides
- DEM-CFD Model Considering Softening Behavior of Ore Particles in Cohesive Zone and Gas Flow Analysis at Low Coke Rate in Blast Furnace
- Decrease of Sulfide in Enclosed Coastal Sea by Using Steelmaking Slag
- Effect of High Reactivity Coke for Mixed Charge in Ore Layer on Reaction Behavior of Each Particle in Blast Furnace
- Influence of Physical Properties of Melt on Liquid Dripping in Packed Bed Analyzed by MPS Method
- Applicability of Nonaqueous Electrolytes for Electrolytic Extraction of Inclusion Particles Containing Zr, Ti, and Ce
- Numerical Simulation of Dripping Behavior of Droplet in Packed Bed Using Particle Method
- Evaluation of Coke Mixed Charging Based on Packed Bed Structure and Gas Permeability Changes in Blast Furnace by DEM-CFD Model
- Influence of Physical Properties of Melt on Liquid Dripping in Packed Bed Analyzed by MPS Method
- Effect of Multi-phase Oxide Particles on TiN Crystallization and Solidification Structure in Ti-Added Ferritic Stainless Steel