Recent Progress on Advanced Blast Furnace Mathematical Models Based on Discrete Method
スポンサーリンク
概要
- 論文の詳細を見る
From the backgrounds of the recent trends towards low reducing agent operation of large blast furnaces and application of diversified charging modes for various burdens, an advanced mathematical model of the blast furnace is required. Although conventional models based on the continuum model have been widely used, these models are not sufficient for the recent demands. Discrete models such as discrete element model (DEM) and particle method are expected to enable precisely simulation of the discontinuous and inhomogeneous phenomena in the recent operating conditions. With discrete models, microscopic information on each particle in the packed bed can be obtained in addition to the overall phenomena in the blast furnace. Visual information for understanding in-furnace phenomena can be also obtained with high spatial resolution. Liquid dripping and the movement of fines in the lower part of the blast furnace can be simulated with high accuracy by using DEM and particle methods such as the Moving Particle Semi-implicit Method (MPS). Moreover, the optimum bed structure for low reducing agent operation is being clarified by application of the Eulerian-Lagrangian method. This review summarizes recent progress on the mathematical models based on the discrete model.
著者
-
Nogami Hiroshi
Institute For Advanced Materials Processing Tohoku University
-
Kon Tatsuya
Institute Of Multidisciplinary Research For Advanced Materials (imram) Tohoku University
-
UEDA Shigeru
Institute of Industrial Science, The University of Tokyo
-
NOGAMI Hiroshi
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
-
Kikuchi Shin
Institute for Semiconductor Technologies, ULVAC, Inc., 1220-1 Suyama, Susono, Shizuoka 410-1231, Japan
-
Natsui Shungo
Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University
-
Ariyama Tatsuro
Professor Emeritus, Tohoku University
-
Natsui Shungo
Division of Material Science and Engineering, Faculty of Engineering, Hokkaido University
関連論文
- Cold-model Experiments on Deadman Renewal Rate Due to Sink-Float Motion of Hearth Coke Bed
- Numerical Analysis of Static Holdup of Fine Particles in Blast Furnace
- Numerical Analysis on Blast Furnace Performance under Operation with Top Gas Recycling and Carbon Composite Agglomerates Charging
- Numerical Analysis on Blast Furnace Performance under Operation with Waste Plastics Injection and Top Gas Recycling
- Numerical Analysis on Injection of Hydrogen Bearing Materials into Blast Furnace
- Numerical Analysis on Charging Carbon Composite Agglomerates into Blast Furnace
- Numerical Analysis on Top Gas Recycling in Blast Furnace with Carbon Composite Agglomerates Charging
- Numerical Evaluation on Blast Furnace Performance under Operation with Carbon Composite Agglomerates Charging
- Numerical Analysis on Effects of Charging Carbon Composite Agglomerates on Blast Furnace Operation
- Mathematical Model of Over-micron and Nano-scale Powders Accumulation in a Coke Fixed-Bed Filter
- Numerical Simulation of the Moving Bed Furnace for Iron Scrap Melting
- Numerical Simulation of the Moving Bed Furnace for Iron Scrap Melting
- Three-dimensional Multiphase Mathematical Modeling of the Blast Furnace Based on the Multifluid Model
- Numerical Analysis of Multiple Injection of Pulverized Coal, Prereduced Iron Ore and Flux with Oxygen Enrichment to the Blast Furnace
- Transient Mathematical Model of Blast Furnace Based on Multi-fluid Concept, with Application to High PCI Operation
- Numerical study on natural gas injection to the blast furnace
- Analysis of transient blast furnace behavior by using a 3-D mathematical model
- Three-dimensional blast furnace mathematical modeling based on multi-fluid theory
- SiO_2 Etching Using M=0 Helicon Wave Plasma
- Numerical Investigation on Effects of Deadman Structure and Powder Properties on Gas and Powder Flows in Lower Part of Blast Furnace
- Computational Investigation of Scrap Charging to the Blast Furnace
- Analysis of Actual Blast Furnace Operations and Evaluation of Static Liquid Holdup Effects by the Four Fluid Model
- Prediction of Blast Furnace Performance with Top Gas Recycling
- A Mathematical Model for Blast Furnace Reaction Analysis Based on the Four Fluid Model
- A Mathematical Model of Four Phase Motion and Heat Transfer in the Blast Furnace
- Distributions of Sn, Sb, and Bi between Ag-Pb Alloy and PbO Based Melt at 1273K
- Characteristics of Solid Flow and Stress Distribution Including Asymmetric Phenomena in Blast Furnace Analyzed by Discrete Element Method
- Optimization of Physical Parameters of Discrete Element Method for Blast Furnace and Its Application to the Analysis on Solid Motion around Raceway
- Improvement of Reactivity of Carbon Iron Ore Composite with Biomass Char for Blast Furnace
- Reaction Model and Reduction Behavior of Carbon Iron Ore Composite in Blast Furnace
- Infrared Emission Spectra of CaF_2-CaO-SiO_2 Melt
- Phasediagram study on the Al_2O_3-CaO-TiO_2 system
- Production of Mn-Fe Alloy from Slag Generated in Mn-removal Treatment of Molten Cast Iron
- Prediction of Generation Rates in "Reactive Arc Plasma" Ultrafine Powder Production Process
- Numerical Analysis of the Flow Characteristics and Temperature Distribution in Metal Beads Subjected to Transferred Arc Plasma Impingement
- Prediction of Surface Temperature on Metal Beads Subjected to Argon-Hydrogen Transferred Arc Plasma Impingement
- Modeling of the Flow, Temperature and Concentration Fields in an Arc Plasma Reactor with Argon-Nitrogen Atmosphere
- NUMERICAL SIMULATION OF FLOW AND TEMPERATURE DISTRIBUTION IN A TRANSFERRED ARGON ARC PLASMA ENCLOSED IN A CHAMBER
- Etching Characteristics by M=0 Helicon Wave Plasma ( Plasma Processing)
- Exergy Analysis of Charcoal Charging Operation of Blast Furnace
- Transient Behavior of Burden Descending and Influence of Cohesive Zone Shape on Solid Flow and Stress Distribution in Blast Furnace by Discrete Element Method
- Recent Progress and Future Perspective on Mathematical Modeling of Blast Furnace
- Enhancement of Reactivity of Carbon Iron Ore Composite Using Redox Reaction of Iron Oxide Powder
- Catalytic Effect of Fe, CaO and Molten Oxide on the Gasification Reaction of Coke and Biomass Char
- Influence of Blast Furnace Inner Volume on Solid Flow and Stress Distribution by Three Dimensional Discrete Element Method
- Dynamic Analysis of Gas and Solid Flows in Blast Furnace with Shaft Gas Injection by Hybrid Model of DEM-CFD
- Thermodynamic Consideration on the Absorption Properties of Carbon Dioxide to Basic Oxide
- Activity Coefficient of AgO_ in PbO-NaO_ and PbO-CaO Melts at 1273K
- Thermodynamic Properties of Selenium in Ag-Pb Alloy and Lead Oxide Phases at 1273K
- Numerical Analysis on Effect of Humidified Blasting on Blast Furnace Operation
- Simultaneous Three-dimensional Analysis of Gas-Solid Flow in Blast Furnace by Combining Discrete Element Method and Computational Fluid Dynamics
- Numerical Inverstigation of Simulaneous Injection of Pulverized Coal and Natural Gas with Oxygen Enrichment to the Blast Furnace
- An unsteady state mathematical model of blast furnace based on multi-fluid concept
- An Application of Bingham Model to Viscous Fluid Modeling of Solid Flow in Moving Bed
- Effect of Solution Loss Reaction on Coke Degradation Rate under Sheer Stress
- Dry Etching Process for Pb(Zr,Ti)O3 Thin-Film Actuators
- CO_2 Absorption and Desorption Abilities of Li_2O-TiO_2 Compounds
- Penetration Effect of Injected Gas at Shaft Gas Injection in Blast Furnace Analyzed by Hybrid Model of DEM-CFD
- Numerical Analysis on Behavior of Unburned Char and Fine Coke in Blast Furnace
- Wettability Model Considering Three-Phase Interfacial Energetics in Particle Method
- Numerical Simulation of Dripping Behavior of Droplet in Packed Bed Using Particle Method
- Extraction of Nonmetallic Inclusion Particles Containing MgO from Steel
- Evaluation of Coke Mixed Charging Based on Packed Bed Structure and Gas Permeability Changes in Blast Furnace by DEM-CFD Model
- Experimental Study and Atomic Level Description of Adsorption Process of CO_2 on Doped Alkaline Earth Oxides
- DEM-CFD Model Considering Softening Behavior of Ore Particles in Cohesive Zone and Gas Flow Analysis at Low Coke Rate in Blast Furnace
- Effect of High Reactivity Coke for Mixed Charge in Ore Layer on Reaction Behavior of Each Particle in Blast Furnace
- Influence of Physical Properties of Melt on Liquid Dripping in Packed Bed Analyzed by MPS Method
- Applicability of Nonaqueous Electrolytes for Electrolytic Extraction of Inclusion Particles Containing Zr, Ti, and Ce
- Simulation of Transport Phenomena around the Raceway Zone in the Blast Furnace with and without Pulverized Coal Injection.
- Bahavior of- Powders in a Packed Bed with Lateral Inlets.
- Numerical Simulation of Dripping Behavior of Droplet in Packed Bed Using Particle Method
- Modeling of Solid Flow in Moving Beds.
- Evaluation of Coke Mixed Charging Based on Packed Bed Structure and Gas Permeability Changes in Blast Furnace by DEM-CFD Model
- Recent Progress on Advanced Blast Furnace Mathematical Models Based on Discrete Method
- Influence of Physical Properties of Melt on Liquid Dripping in Packed Bed Analyzed by MPS Method