Enhancement of Reactivity of Carbon Iron Ore Composite Using Redox Reaction of Iron Oxide Powder
スポンサーリンク
概要
- 論文の詳細を見る
Increasing reactivity of burden for the blast furnace can decrease temperature of the thermal reserve zone and reducing agent for producing pig iron. Carbon iron ore composite is considered to be a candidate of high reactive burden. Reactivity of the carbon iron ore composite can be improved by an increase in reactivity of carbon. It is known that Redox reaction of iron enhances the gasification reaction of carbon, therefore carbon supported by iron can accelerate the reaction of the carbon iron ore composite.In the present study, the newly designed carbon iron ore composite consisting of biomass char coated with submicron iron oxide powder and iron ore fines was proposed to improve the reduction rate. These submicron iron oxide powders can be generally produced by the fluidized roasting of pickling waste liquor of steel sheet in the steel works. These iron oxide powders with submicron size directly attached to carbon could work as a catalyst to increase the gasification reaction rate of carbon. It was confirmed that addition of submicron iron oxide powder to the carbon iron ore composite with biomass char enhanced its reactivity. On the other hand, the addition of iron oxide powders to coke was not effective. Substitution of small ratio of iron oxide powder for iron ore fines in the carbon iron ore composite with biomass char remarkably improved the reactivity of the composite.
著者
-
Watanabe Kentaro
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
-
Ueda Shigeru
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
-
Inoue Ryo
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
-
Ariyama Tatsuro
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
関連論文
- Enhancement of Reactivity of Carbon Iron Ore Composite Using Redox Reaction of Iron Oxide Powder
- Influences of Physical Properties of Particle in Discrete Element Method on Descending Phenomena and Stress Distribution in Blast Furnace
- Transient Behavior of Burden Descending and Influence of Cohesive Zone Shape on Solid Flow and Stress Distribution in Blast Furnace by Discrete Element Method
- Simultaneous Three-dimensional Analysis of Gas–Solid Flow in Blast Furnace by Combining Discrete Element Method and Computational Fluid Dynamics
- Dynamic Analysis of Gas and Solid Flows in Blast Furnace with Shaft Gas Injection by Hybrid Model of DEM-CFD
- Quantitative Analysis of Total and Insoluble Elements and Inclusion Composition in Metal by Laser Ablation ICP-MS Method
- Thermodynamics on Control of Inclusions Composition in Ultra-clean Steels
- Dissolution Behavior and Stabilization of Fluorine in Secondary Refining Slags
- Influence of Gypsum Addition and Hydrothermal Treatment on Dissolution Behavior of Fluorine in Hot Metal Pretreatment Slags
- Mechanism of Dephosphorization with CaO-SiO_2-Fe_tO Slags Containing Mesoscopic Scale 2CaO・SiO_2 Particles
- Behavior of Phosphorous Transfer from CaO-Fe_tO-P_2O_5(-SiO_2) Slag to CaO Particles
- Fluorine-containing Mineral Phases in Ironmaking and Steelmaking Slags and Their Solubilities in Aqueous Solution
- Distributions of Sn, Sb, and Bi between Ag-Pb Alloy and PbO Based Melt at 1273K
- Characteristics of Solid Flow and Stress Distribution Including Asymmetric Phenomena in Blast Furnace Analyzed by Discrete Element Method
- Optimization of Physical Parameters of Discrete Element Method for Blast Furnace and Its Application to the Analysis on Solid Motion around Raceway
- Improvement of Reactivity of Carbon Iron Ore Composite with Biomass Char for Blast Furnace
- Reaction Model and Reduction Behavior of Carbon Iron Ore Composite in Blast Furnace
- Infrared Emission Spectra of CaF_2-CaO-SiO_2 Melt
- Phasediagram study on the Al_2O_3-CaO-TiO_2 system
- Phosphorous Partition between 2CaO・SiO_2 Particles and CaO-SiO_2-Fe_tO Slags
- Thermodynamics of Zirconium Deoxidation Equilibrium in Liquid Iron by EMF Measurements
- Size Distribution of Deoxidation Products with Ti, Pr and Ti/Pr in Fe-10mass%Ni Alloy
- Grain-growth-inhibiting Effects of TiC and ZrC Precipitates in Fe-0.15-0.30mass%C Alloy
- Effect of TiN Precipitates on Austenite Grain Size in Fe-1.5%Mn-0.12%Ti-Si(
- Transient Behavior of Burden Descending and Influence of Cohesive Zone Shape on Solid Flow and Stress Distribution in Blast Furnace by Discrete Element Method
- Recent Progress and Future Perspective on Mathematical Modeling of Blast Furnace
- Enhancement of Reactivity of Carbon Iron Ore Composite Using Redox Reaction of Iron Oxide Powder
- Catalytic Effect of Fe, CaO and Molten Oxide on the Gasification Reaction of Coke and Biomass Char
- Influence of Blast Furnace Inner Volume on Solid Flow and Stress Distribution by Three Dimensional Discrete Element Method
- Thermodynamic Consideration on the Absorption Properties of Carbon Dioxide to Basic Oxide
- Simultaneous Determination of the Composition and Size of Oxide Particles in Solid Materials by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry
- Activity Coefficient of AgO_ in PbO-NaO_ and PbO-CaO Melts at 1273K
- Thermodynamic Properties of Selenium in Ag-Pb Alloy and Lead Oxide Phases at 1273K
- Activity Coefficient of AgO_ in the PbO-SiO_2 Melt at 1273K
- Thermodynamic Study on the Ag-Pb-O System at 1273K
- CO_2 Absorption and Desorption Abilities of Li_2O-TiO_2 Compounds
- Influence of Physical Properties of Melt on Liquid Dripping in Packed Bed Analyzed by MPS Method