Improvement of a Micro-Droplet Guiding Technique for Laser-Induced Breakdown Spectroscopy
スポンサーリンク
概要
- 論文の詳細を見る
A new and reliable set-up for laser-induced breakdown spectroscopy (LIBS) which enabled the precise micro-droplet observation and guiding the solution samples into a laser beam spot area was designed. The method presented here allowed micronizing of the liquid sample confining the whole volume of the sample in the laser beam spot area (minimum beam spot diameter 53.2μm, micro-droplet diameter 30-40μm), separating it from its surroundings. As a result, LIBS with the micro-drop ejection system produced greater intensities than the old technique of bulk-liquid measurement based on data from 100 laser pulse shots. Advantages of this method were: strong emissions, no sample splashing, solution density controllability and no chemical denaturation. This experimental set-up helped to overcome the disadvantage of LIBS with a micro-drop ejection system.
- 社団法人 電気学会の論文
- 2008-07-01
著者
-
IKEZAWA Satoshi
Graduate School of IPS, Waseda University
-
WAKAMATSU Muneaki
Graduate School of IPS, Waseda University
-
PAWLAT Joanna
Graduate School of IPS, Waseda University
-
UEDA Toshitsugu
Graduate School of IPS, Waseda University
-
Ikezawa Satoshi
Graduate School Of Ips Waseda University
-
Pawlat Joanna
Graduate School Of Ips Waseda University
-
Pawlat Joanna
Graduate School Of Information Production And Systems Waseda University
-
Ueda Toshitsugu
Graduate School Of Ips Waseda University
-
Ueda Toshitsugu
Graduate School Of Information Production And Systems Waseda Univ.
-
Ueda Toshitsugu
Waseda University The Graduate School Of Information Production And Systems
-
Wakamatsu Muneaki
Graduate School Of Ips Waseda University
-
Ueda Toshitsugu
Waseda University
関連論文
- Sensing System for Multiple Measurements of Trace Elements Using Laser-Induced Breakdown Spectroscopy
- Differential Platinum Thin Film Hydrogen Gas Sensor Fabricated by MEMS Techniques
- Improvement of a Micro-Droplet Guiding Technique for Laser-Induced Breakdown Spectroscopy
- Low Concentration Gas Measurement Using Photonic Bandgap Fiber Cell Sensor
- Particle Element and Size Simultaneous Measurement Using LIBS
- Development of Solution Measurement Using Laser-Induced Breakdown Spectroscopy Integrated with Micro-Droplet Ejection System
- Photonic Bandgap Fiber for a Sensing Device
- Thermo-Resistive Platinum Thin Film Hydrogen Gas Sensor Fabricated by MEMS Techniques
- Fabrication of Two-Axis Quartz MEMS-Based Capacitive Tilt Sensor
- Wet Etched High Aspect Ratio Microstructures on Quartz for MEMS Applications
- In-situ Measurement for Gas Concentrations using Tunable Lasers
- Deblur of Radially Variant Blurred Image for Single Lens System
- Development of Highly Integrated Quartz Micro-Electro-Mechanical System Tilt Sensor
- Thermomechanical Fatigue Performance of Lead-Free Chip Scale Package Assemblies with Fast Cure and Reworkable Capillary Flow Underfills (Special Issue : Advanced Metallization for ULSI Applications)
- Board-Level Solder Joint Reliability of Edge- and Corner-Bonded Lead-Free Chip Scale Package Assemblies Subjected to Thermal Cycling (Special Issue : Solid State Devices and Materials (2))
- Development of Carbonaceous Particle Size Analyzer Using Laser-induced Incandescence Technology
- Design and Fabrication of Quartz Micro-Electro-Mechanical System-Based Double-Ended Tuning Fork with Variable Sections
- Vibration Analysis of Original Shape Quartz Resonator for High Quality Factor Realization
- High-Sensitivity Fiber-Optic Fabry--Perot Interferometer Temperature Sensor
- Fabrication of Photonic Bandgap Fiber Gas Cell Using Focused Ion Beam Cutting
- Doubled Optical Path Length for Photonic Bandgap Fiber Gas Cell Using Micromirror
- Damping Characteristics of Quartz Tilt Sensor with Nonparallel Comb Electrode