Development of Solution Measurement Using Laser-Induced Breakdown Spectroscopy Integrated with Micro-Droplet Ejection System
スポンサーリンク
概要
- 論文の詳細を見る
The laser-induced breakdown spectroscopy (LIBS) using micro-droplet sodium chloride solution is presented. Since the 1980s, many liquid miniaturizations of analytical technique for LIBS measurements were reported. The method we present allowed micronizing the sample in such a way that whole volume of a sample was confined in the laser beam spot area (minimum beam spot diameter 53.2μm, microdroplet diameter 50-60μm) and was separated from its surrounding condition. If the samples physical state was liquid, the density of solution could be controlled as needed. In this paper, originally designed ink-jet system for sampling procedure was presented. According to the new method, improved sensitivity for drawing calibration curves with the aim of the LIBS quantitative measurement were obtained.
- 社団法人 電気学会の論文
- 2007-07-01
著者
-
IKEZAWA Satoshi
Graduate School of IPS, Waseda University
-
WAKAMATSU Muneaki
Graduate School of IPS, Waseda University
-
UEDA Toshitsugu
Graduate School of IPS, Waseda University
-
Ikezawa Satoshi
Graduate School Of Ips Waseda University
-
Ueda Toshitsugu
Graduate School Of Ips Waseda University
-
Ueda Toshitsugu
Graduate School Of Information Production And Systems Waseda Univ.
-
Ueda Toshitsugu
Waseda University The Graduate School Of Information Production And Systems
-
Wakamatsu Muneaki
Graduate School Of Ips Waseda University
-
Ueda Toshitsugu
Waseda University
関連論文
- Sensing System for Multiple Measurements of Trace Elements Using Laser-Induced Breakdown Spectroscopy
- Differential Platinum Thin Film Hydrogen Gas Sensor Fabricated by MEMS Techniques
- Improvement of a Micro-Droplet Guiding Technique for Laser-Induced Breakdown Spectroscopy
- Low Concentration Gas Measurement Using Photonic Bandgap Fiber Cell Sensor
- Particle Element and Size Simultaneous Measurement Using LIBS
- Development of Solution Measurement Using Laser-Induced Breakdown Spectroscopy Integrated with Micro-Droplet Ejection System
- Photonic Bandgap Fiber for a Sensing Device
- Thermo-Resistive Platinum Thin Film Hydrogen Gas Sensor Fabricated by MEMS Techniques
- Fabrication of Two-Axis Quartz MEMS-Based Capacitive Tilt Sensor
- Wet Etched High Aspect Ratio Microstructures on Quartz for MEMS Applications
- In-situ Measurement for Gas Concentrations using Tunable Lasers
- Deblur of Radially Variant Blurred Image for Single Lens System
- Development of Highly Integrated Quartz Micro-Electro-Mechanical System Tilt Sensor
- Thermomechanical Fatigue Performance of Lead-Free Chip Scale Package Assemblies with Fast Cure and Reworkable Capillary Flow Underfills (Special Issue : Advanced Metallization for ULSI Applications)
- Board-Level Solder Joint Reliability of Edge- and Corner-Bonded Lead-Free Chip Scale Package Assemblies Subjected to Thermal Cycling (Special Issue : Solid State Devices and Materials (2))
- Development of Carbonaceous Particle Size Analyzer Using Laser-induced Incandescence Technology
- Design and Fabrication of Quartz Micro-Electro-Mechanical System-Based Double-Ended Tuning Fork with Variable Sections
- Vibration Analysis of Original Shape Quartz Resonator for High Quality Factor Realization
- High-Sensitivity Fiber-Optic Fabry--Perot Interferometer Temperature Sensor
- Fabrication of Photonic Bandgap Fiber Gas Cell Using Focused Ion Beam Cutting
- Doubled Optical Path Length for Photonic Bandgap Fiber Gas Cell Using Micromirror
- Damping Characteristics of Quartz Tilt Sensor with Nonparallel Comb Electrode