Mechanical-to-Electric Energy Conversion by Mechanically Driven Flow of Electrolytes Confined in Nanochannels
スポンサーリンク
概要
- 論文の詳細を見る
This letter presents a conceptual mechanical-to-electric energy harvesting mechanism, in which an electrolytic flow is driven through a nanoporous electrode to perturb the interfacial electrochemical equilibrium and generate voltage. Using an electrochemical analysis coupled with molecular simulations, we demonstrate that both flow velocity and nanopore size have prominent effects on the structural and electrochemical properties of nanoconfined electrolytes. By first-order approximation, the energy conversion efficiency is found to be promising, and strategies for further improvements are suggested. A preliminary experiment is carried out to validate that the electrolytic flow in nanopores can cause significant energy generation.
- 2013-01-25
著者
-
Liu Ling
Department Of Applied Biological Chemistry The University Of Tokyo
-
Chen Xi
Columbia Univ.
-
Qiao Yu
Program of Materials Science and Engineering, University of California --- San Diego, La Jolla, CA 92093, U.S.A.
-
Lim Hyuck
Program of Materials Science and Engineering, University of California --- San Diego, La Jolla, CA 92093, U.S.A.
-
Lu Weiyi
Department of Structural Engineering, University of California --- San Diego, La Jolla, CA 92093, U.S.A.
-
CHEN Xi
Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University
関連論文
- Elevated Serum Fibrin-Monomer Levels are Associated With High Long-Term Cerebrovascular Event Rates in Acute Ischemic Stroke Patients
- Higher Levels of Serum Fibrin-Monomer Reflect Hypercoagulable State and Thrombus Formation in the Left Atrial Appendage in Patients With Acute Ischemic Stroke
- PJ-657 Circulating Coagulation Activity Directly Associates Atheromatous Plaque Rupture in the Aortic Arch in Patients with Atherothrombotic Infarction(Cerebrovascular circulation/Stroke-3 (H) PJ110,Poster Session (Japanese),The 70th Anniversary Annual Sc
- PE-362 Intensity Variation in the Left Atrial Appendage during Levovist Infusion is a Useful Marker for the Occurrence of Cardioembolic Stroke(Echo/Doppler-8 (I) PE61,Poster Session (English),The 70th Anniversary Annual Scientific Meeting of the Japanese
- OE-222 Circulating Platelet Activation Contributes to the Thrombus Formation in Left Atrial Appendage in Patients with Cardioembolic Stroke(Thromboembolism/Antithrombotic therapy/Thrombolysis-1 (H) OE37,Oral Presentation (English),The 70th Anniversary Ann
- 154 押込試験における識別限界ひずみ(材料力学III)
- Association of COX2 functional polymorphisms and the risk of vitiligo in Chinese populations
- 1207 薄膜/基板材への押込み硬さにおける基板効果のFEM解析(S05-2 ナノ・マイクロ材料の強度・信頼性(2)ナノ・マイクロ材料の強度物性測定,21世紀地球環境革命の機械工学:人・マイクロナノ・エネルギー・環境)
- 1205 圧子押込みによる薄膜材料の弾塑性特性評価(S05-2 ナノ・マイクロ材料の強度・信頼性(2)ナノ・マイクロ材料の強度物性測定,21世紀地球環境革命の機械工学:人・マイクロナノ・エネルギー・環境)
- 円錐圧子押込みにおける基板効果を利用した薄膜材料の塑性特性同定法
- 2018 押込試験を利用した材料特性評価における唯一性の欠如(S16-2 物理的・力学的現象,S16 インデンテーションの物理と応用)
- 208 微小押込試験による薄膜材料の塑性特性評価 : 基板効果を利用した方法(マイクロ・ナノI,一般セッション)
- Prevention of Initial Supercooling in Progressive Freeze-concentration
- Progressive Freeze-Concentration of Tomato Juice
- Polymorphisms in the FOXP3 gene in Han Chinese psoriasis patients
- Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer
- 615 基板効果を考慮した薄膜押込荷重係数の関数(材料特性,OS01 電子デバイス・電子材料と計算力学)
- 614 薄膜の機械的特性評価における限界押込深さ(材料特性,OS01 電子デバイス・電子材料と計算力学)
- 314 薄膜材の押込荷重係数の推定(GS1(3) 変形,破壊挙動,疲労,クリープ,衝撃)
- 437 薄膜材の押込み荷重係数に対する基板効果(変形と計測,一般セッション)
- 310 薄膜/基板への押込みに及ぼす基板材弾性異方性の影響(OS2-2 皮膜・薄膜の機械的特性,OS2 薄膜・皮膜とその膜構造の特性評価)
- 309 円錐圧子押込試験における薄膜材料の塑性特性評価 : 基板効果を利用した方法(OS2-2 皮膜・薄膜の機械的特性,OS2 薄膜・皮膜とその膜構造の特性評価)
- 鋭い圧子押込みにおける負荷除荷曲線を利用した薄膜材料の弾塑性特性評価
- 鋭い圧子押込で得られる荷重変位関係に及ぼすひずみ速度の影響
- Biosynthesis of Coumarin Glycosides by Transgenic Hairy Roots of Polygonum multiflorum
- Biosynthesis of Coumarin Glycosides by Transgenic Hairy Roots of Polygonum multiflorum
- Mechanical-to-Electric Energy Conversion by Mechanically Driven Flow of Electrolytes Confined in Nanochannels
- Mechanical-to-Electric Energy Conversion by Mechanically Driven Flow of Electrolytes Confined in Nanochannels