Negative Differential Resistance Arising from Tunneling Current through Multiple Quantum Dots
スポンサーリンク
概要
- 論文の詳細を見る
The tunneling current through multiple quantum dots (QDs) sandwiched between metallic contacts is theoretically studied in the framework of Green's function technique. The Anderson model with multiple energy levels is employed to simulate the considered system. We found that the negative differential resistance (NDR) arises from the interdot Coulomb interactions and the QDs under shell-filling conditions. Such NDRs are suppressed by the temperature effect. It is expected that multipeak NDR devices could be realized using a sophisticated layout of quantum dots.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2008-11-25
著者
-
Kuo David
Department Of Electrical Engineering National Central University
-
Kuo David
Department of Electrical Engineering, National Central University, Chungli 320, Taiwan
-
Kuo David
Department of Electrical Engineering and Department of Physics, National Central University, Chungli 320 Taiwan
関連論文
- Electrically-driven Spontaneous Emission Spectrum of a Single Quantum Dot(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Optical and Electronic Characteristics of Germanium Quantum Dots Formed by Selective Oxidation of SiGe/Si-on-Insulator
- Single-Electron Transistors for Infrared Wavelength Quantum Communications
- Bistability in the Tunnelling Current through a Ring of N Coupled Quantum Dots
- Tunneling Current Through a Single Germanium Quantum Dot
- Negative Differential Resistance Arising from Tunneling Current through Multiple Quantum Dots
- Thermoelectric Properties of Multiple Quantum Dots Junction System
- Effect of Interdot Coulomb Repulsion on Charge Transport of Parallel Two Single-Electron Transistors
- Bipolar Thermoelectric Effect in a Serially Coupled Quantum Dot System
- Thermoelectric Effects of Multiple Quantum Dot Junctions in the Nonlinear Response Regime
- Stark Effect on Exciton Complexes of a Single Quantum Dot Embedded in a p–n Junction
- Thermoelectric Properties of Double Quantum Dots Embedded in a Nanowire