Fast Deposition Process for Graded SiGe Buffer Layers
スポンサーリンク
概要
- 論文の詳細を見る
Low-energy plasma-enhanced chemical vapour deposition (LEPECVD) is shown to allow for the synthesis of relaxed graded Si1-xGex, ($0\leq x\leq 1$) buffer layers at deposition rates above 5 nm/s. On the basis of X-ray reciprocal space mapping, transmission electron microscopy, atomic force microscopy and defect etching, the quality of these buffer layers is shown to be comparable to similar structures grown by other techniques at much lower rates. LEPECVD and molecular beam epitaxy (MBE) have been combined for the synthesis of modulation-doped Si quantum wells, yielding mobilities up to 150000 cm2/Vs at 2 K.
- INSTITUTE OF PURE AND APPLIED PHYSICSの論文
- 2000-04-30
著者
-
Kanel Hans
Laboratorium fur Festkorperphysik
-
Kummer Matthias
Laboratorium Fur Festkorperphysik Eth Zurich:interstaatliche Fachhochschule Fur Technik Buchs
-
Rosenblad Carsten
Laboratorium Fur Festkorperphysik Eth Zurich
-
Muller Elisabeth
Laboratorium Fur Mikro-und Nanostructuren Psi
-
Hackbarth Thomas
Daimlerchrysler Ag Research And Technology
-
Graf Thomas
Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
-
Rosenblad Carsten
Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
-
Kummer Matthias
Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
-
Hackbarth Thomas
DaimlerChrysler AG, Research and Technology, Wilhelm-Runge-St. 11, D-89081 Ulm, Germany
-
Hackbarth Thomas
Daimler-Chrysler AG, Research Center Ulm, Wilhelm-Runge-St. 11, 89081 Ulm, Germany
関連論文
- Ballistic-Electron-Emission Microscopy on Epitaxial Silicides
- Ballistic-Electron-Emission Microscopy at Epitaxial Metal/Semiconductor Interfaces(STM-BEEM interfaces)
- Fast Deposition Process for Graded SiGe Buffer Layers
- Low Frequency Noise in Insulated-Gate Strained-Si n-Channel Modulation Doped Field Effect Transistors
- Sub-100 nm Gate Technologies for Si/SiGe-Buried-Channel RF Devices
- Fast Deposition Process for Graded SiGe Buffer Layers
- Sub-100 nm Gate Technologies for Si/SiGe-Buried-Channel RF Devices