Organic–Inorganic Composites Designed for Biomedical Applications
スポンサーリンク
概要
- 論文の詳細を見る
Several varieties of ceramics, such as Bioglass-type glasses, sintered hydroxyapatite and glass-ceramic A–W, exhibit specific biological affinity, i.e., direct bonding to surrounding bone, when implanted in bony defects. These bone-bonding ceramics are called bioactive ceramics and are utilized as important bone substitutes in the medical field. However, there is a limitation to their clinical applications because of their inappropriate mechanical properties. Natural bone takes a kind of organic–inorganic composite, where apatite nanocrystals are precipitated on collagen fibers. Therefore, problems with the bioactive ceramics can be solved by material design based on the composites. In this paper, current research topics on the development of bioactive organic–inorganic composites inspired by actual bone microstructure have been reviewed in correlation with preparation methods and various properties. Several kinds of inorganic components have been found to exhibit bioactivity in the body environment. Combination of the inorganic components with various organic polymers enables the development of bioactive organic–inorganic composites. In addition, novel biomedical applications of the composites to drug delivery systems, scaffolds for tissue regeneration and injectable biomaterials are available by combining drugs or biological molecules with appropriate control of its microstructure.
- 公益社団法人 日本薬学会の論文
著者
-
OHTSUKI Chikara
Graduate school of Engineering, Nagoya University
-
Ohtsuki Chikara
Graduate School Of Engineering Nagoya Univ.
-
Miyazaki Toshiki
Graduate School Of Life Sci. And Systems Engineering Kyushu Inst. Of Technol.
-
Ishikawa Kunio
Graduate School of Dentistry, Kyushu University
-
Shirosaki Yuki
Frontier Research Academy for Young Researchers, Kyushu Institute of Technology
関連論文
- Protein adsorption on needle-shaped hydroxyapatite prepared by hydrothermal treatment of mixture composed of CaHPO_4・2H_2O and β-Ca_3(PO_4)_2
- Hydroxyapatite-forming capability and mechanical properties of organic-inorganic hybrids and α-tricalcium phosphate porous bodies
- Evaluation of apatite-forming ability and mechanical property of pectin hydrogels( Ceramics for Biomedical Applications in Asian Countries)
- Development of a Bone-Repairing Material Through Hybridization of Biodegradable Polymer with Bone-like Apatite(International Symposium of Maxillofacial and Oral Regenerative Biology in Okayama 2005)
- Fabrication of yttria microcapsules for radiotherapy from water/oil emulsion
- Microstructure and Bioresorbable Properties of α-TCP Ceramic Porous Body Fabricated by Direct Casting Method
- Preparation of Bioactive Chitosan-hydroxyapatite Nanocomposites for Bone Repair through Mechanochemical Reaction
- Formation of needle-like hydroxyapatite by hydrothermal treatment of CaHPO_4・2H_2O combined with β-Ca_3(PO_4)_2
- Hybridization of silver nanoparticles on hydroxyapatite in an aqueous solution(Aqueous Solution Science for Ceramic Processing II)
- Formation of hydroxyapatite on ceramics consisting of tricalcium phosphate in a simulated body fluid( Ceramics for Biomedical Applications in Asian Countries)
- Synthesis of ceramics in MO_-SiO_2 systems through sol-gel processing under coexistence of polyethylene glycol and in vitro evaluation of their bioactivity( Ceramics for Biomedical Applications in Asian Countries)
- Preparation of hydroxyapatite porous ceramics with different porous structures using a hydrothermal treatment with different aqueous solutions( Ceramics for Biomedical Applications in Asian Countries)
- Effect of Silane-Coupling Treatment on Thermal Decomposition of Octacalcium Phosphate
- A Composite of Hydroxyapatite with Electrospun Biodegradable Nanofibers as a Tissue Engineering Material(CELL AND TISSUE ENGINEERING, Advances in Biomedical Science and Engineering)
- Control of the Microstructure of Porous Tricalcium Phosphate: Effects of addition of Mg, Zn and Fe (特集 バイオ機能材料・バイオインスパイアード材料)
- 11-O-29 Formation of Octacalcium Phosphate from α-TCP Porous Body
- 11-O-18 Graded Structure on Bioactive Metal Induced by Chemical Surface Modification
- 11-I-01 Bioactivity of MgO-CaO-SiO_2 Porous Glass-ceramics
- Apatite-forming ability of organic-inorganic hybrids fabricated from glucomannan by chemical modification with alkoxysilane and calcium salt( Ceramics for Biomedical Applications in Asian Countries)
- Effects of Cross-Linking Agent on Apatite-Forming Ability and Mechanical Property of Organic-Inorganic Hybrids Based on Starch
- Fabrication of porous blocks of calcium phosphate through hydrothermal processing under glycine coexistence
- Apatite formation abilities of various carrageenan gels in simulated body environment
- Development of bioactive materials based on bone-bonding mechanism on metal oxides
- Strategy to reduce carbonate incorporation in the fabrication of hydroxyapatite nanopowders
- Synthesis of Calcium Phosphates Containing Metal Ions and Evaluation of their Catalytic Activity for the Decomposition of Hydrogen Peroxide
- Biomineralization on chemically synthesized collagen containing immobilized poly-γ-glutamic acid
- Organic–Inorganic Composites Designed for Biomedical Applications
- Sol–Gel-Derived Silicate Nano-Hybrids for Biomedical Applications
- Biomineralization on chemically synthesized collagen containing immobilized poly-γ-glutamic acid
- Effect of Autoclave and Hot Water Treatments on Surface Structure and In Vitro Apatite-Forming Ability of NaOH- and Heat-Treated Bioactive Titanium Metal