Fine Acceleration Control Method Considering Torque Ripple for Hybrid-Type Stepping Motor
スポンサーリンク
概要
- 論文の詳細を見る
In many studies, alternating current (AC) servo motors are used for the conventional investigation of acceleration control methods using a disturbance observer. A surface permanent magnet synchronous motor (SPMSM) is normally used with the servo motors. Both a low-velocity drive and a high-torque drive are necessary for smooth robotic motion control; however, the SPMSM is not always suitable for these driving conditions. A hybrid-type stepping motor (HBSTM) is more suitable for robotic motion control because, unlike an SPMSM, it has many pole pairs and is able to drive at a lower velocity without mechanical gears. Therefore, this paper proposes an acceleration control method for an HBSTM. However, the HBSTM has a high frequency periodic disturbance torque caused by the cogging torque, which is greater than that of the SPMSM. Moreover, the frequency of the torque ripple, which is caused by the offset and gain error of the current sensor, becomes higher than that of the SPMSM. In the proposed acceleration control system for an HBSTM, this torque ripple is not appropriately compensated for by the phase lag, which occurs in the low-pass filter (LPF) of the disturbance observer. Therefore, this paper proposes using a torque ripple compensator. A new fine acceleration control method considering the torque ripple for an HBSTM is realized by deploying the torque ripple compensator in the proposed acceleration control system for the HBSTM. This proposed system adequately suppresses the torque ripple and realizes smooth acceleration control.
著者
-
Ohishi Kiyoshi
Nagaoka Univ. Technol.
-
Nandayapa Manuel
Nagaoka University Of Technology
-
Takahashi Kenji
Nagaoka University of Technology
-
Hiraide Toshio
Nagaoka University of Technology
関連論文
- High performance of force control based on Kalman filter-disturbance observer utilizing FPGA (産業計測制御研究会 モーションコントロール、センサ応用、信号処理応用、生体信号処理など)
- Adaptive friction compensation for a high precision stage using synchronous piezoelectric device driver (産業計測制御研究会 計測・センサ応用,モーションコントロール全般)
- Accurate Friction Compensation for a High Precision Stage using a Synchronous Piezoelectric Device Driver
- Development and analysis of a wire-based robot with twin direct-drive motor system (特集 モーションコントロール,計測・センサ応用全般)
- 特集論文 Robust Motion Control of Industrial Robot Based on Robot Parameter Identification and Feedforward Control Considering Resonant Frequency (特集:モーションコントロールとその計測・センサ)
- Realization of Anti-slip/skid Re-adhesion Control for Electric Commuter Train Based on Disturbance Observer
- Advanced Motion Control by Multi-Sensor-based Disturbance Observer
- Improvement of Performance of a Tracking Servo System for an Optical Disk Drive
- Preface
- Force Sensor-less Workspace Virtual Impedance Control Considering Resonant Vibration for Industrial Robot
- Servo Techniques for Optical Disk Drives : High-Speed and Precise Optical Beam-Positioning Control
- High-speed tracking servo using zero phase error tracking-feed-forward method for professional-use optical disks over 10000 rpm (Special issue: Optical memories)
- High-Speed Tracking Control System for Broadcast-Use Optical Disk Drive (Special Issue: Optical Memories)
- High-Speed Tracking Method Using Zero Phase Error Tracking-Feed-Forward (ZPET-FF) Control for High-Data-Transfer-Rate Optical Disk Drives
- Robust Control Based on Disturbance Observer and Polynomial Coefficient Approach for Mechanical System
- Impedance Control for Industrial Robot Manipulators With Elastic Joints Deflection Compensation
- Force Sensor-less Impedance Control Considering Resonant Vibration for Robot Manipulator
- Parameter Identification Method Based on Resonant Frequency For Robust Motion Control of Robot Manipulator
- Sensorless wire rope tension approach to improve the vibration-free performance of cooperative human-robot system (産業計測制御研究会 計測・センサ応用,モーションコントロール全般)
- Wideband of force sensing by twin direct-drive motor system with acceleration sensor (産業計測制御研究会 テーマ「計測・センサ応用,モーションコントロール全般」)
- Robust Reactive Force Control without Force Sensor Based on Dual Disturbance Observer with Consideration of Two-inertia System
- High-Speed Tracking Servo Using Zero Phase Error Tracking-Feed-Forward Method for Professional-Use Optical Disks over 10000 rpm
- High-Speed Tracking Control System for Broadcast-Use Optical Disk Drive
- Feed-Forward Tracking Servo System for High-Data-Rate Optical Recording
- High-Speed Flexible Optical Disk for Broadcast Archival Storage
- High-Speed Recording up to 15,000 rpm Using Thin Optical Disks
- High-Speed Tracking Method Using Zero Phase Error Tracking-Feed-Forward (ZPET-FF) Control for High-Data-Transfer-Rate Optical Disk Drives
- Kalman Filter-Based Disturbance Observer and its Applications to Sensorless Force Control
- Robust position control of end-effector considering gear stiffness and arm stiffness for industrial robot (特集 モーションコントロール,計測・センサ応用全般)
- Friction Free and Noise Free Force Observation Based on an Integration of High-order Disturbance Observer with Kalman-filter (産業計測制御研究会 産業計測制御一般)
- High Performance Velocity Estimation for Controllers with Short Processing Time by FPGA
- Fine Output Voltage Control Method considering Time-Delay of Digital Inverter System for X-ray Computed Tomography
- High-Speed and Precise Gap Servo System for Near-Field Optical Recording
- Fine Acceleration Control Method Considering Torque Ripple for Hybrid-Type Stepping Motor
- Electro-pneumatic Blended Braking Control of Regenerative Brake and Air Brake based on Estimated Adhesion Coefficient