In Vitro Oxygenation Injury to Slices Prepared from Ischemic Kidney in Rats.
スポンサーリンク
概要
- 論文の詳細を見る
When cortical slices prepared from rat kidneys made ischemic were incubated under a 100% oxygen atmosphere, lipid peroxidation increased and the ATP level decreased. Such oxygenation of the slices was accompanied by decreases in gluconeogenesis and the glutathione level, but an anti-oxidant, <I>N</I>, <I>N''</I>-diphenyl-<I>p</I>-phenylenediamine, prevented the increase in lipid peroxidation without affecting decreases in ATP and glutathione levels, and gluconeogenesis. The results suggest that postischemic oxygenation of slices generates free radicals that cause the production of lipid peroxidation not associated with tissue injury.
- 公益社団法人 日本薬理学会の論文
著者
-
Gemba Munekazu
Division Of Pharmacology Osaka University Of Farmaceutical Sciences
-
Asakura Kenji
Division of Pharmacology, Osaka University of Pharmaceutical Sciences
-
Ikeda Hanae
Division of Pharmacology, Osaka University of Pharmaceutical Sciences
関連論文
- Protective Effect of Serum Thymic Factor, FTS, on Cephaloridine-Induced Nephrotoxicity in Rats(Pharmacology)
- Serum thymic factor (FTS) prevents cephaloridine-induced nephrotoxicity in rats (KIDNEYS AND URINARY EXCRETION SYSTEM) (GENERAL SESSION BY POSTER PRESENTATION) (Proceedings of the 30th Annual Meeting)
- Structure-Activity Relationships of Dermorphin Analogues Containing Chiral Piperazin-2-one and Piperazine Derivatives
- Establishment of Highly Specific and Quantitative Immunoassay Systems for Staphylococcal Enterotoxin A, B, and C Using Newly-Developed Monoclonal Antibodies
- INVOLVEMENT OF ACTIVATION OF NADPH OXIDASE AND EXTRACELLULAR SIGNAL-REGULATED KINASE (ERK) IN RENAL CELL INJURY INDUCED BY ZINC
- Stimulation of p-Aminohippurate Transport in Renal Cortical Slices Prepared from Rats Treated with Ginsenosides
- Modulation by Cyclic AMP and Phorbol Myristate Acetate of Cephaloridine-Induced Injury in Rat Renal Cortical Slices
- Increases in Urinary Enzyme Excretion in Rats Depleted of Glutathione Inhibited by Scavenger of Oxygen Free Radicals
- Effects of Efonidipine Hydrochloride on Renal Arteriolar Diameters in Spontaneously Hypertensive Rats
- Synthesis and Opiate Activity of Pseudo-Tetrapeptides Containing Chiral Piperazin-2-one and Piperazine Derivatives
- Relationship of Intracellular Calcium and Oxygen Radicals to Cisplatin-Related Renal Cell Injury
- Hypoxia and Reoxygenation - Induced Injury of Renal Epithelial Cells: Effect of Free Radical Scavengers
- INVOLVEMENT OF RAF-1/MEK/ERK1/2 SIGNALING PATHWAY IN ZINC-INDUCED INJURY IN RAT RENAL CORTICAL SLICES
- PROTECTIVE EFFECT OF A PROTEIN KINASE INHIBITOR ON CELLULAR INJURY INDUCED BY CEPHALORIDINE IN THE PORCINE KIDNEY CELL LINE LLC-PK_1
- Relationship between Cisplatin or Nedaplatin-Induced Nephrotoxicity and Renal Accumulation(Pharmacology)
- 2C-10 Enhancement by Protein Kinase C Activation and Amelioration by Cyclic AMP of Cephaloridine-Inducd Injury in Rat Kidney Cortical Slices.
- Cephaloridine Induces Translocation of Protein Kinase C δ Into Mitochondria and Enhances Mitochondrial Generation of Free Radicals in the Kidney Cortex of Rats Causing Renal Dysfunction
- ANTIOXIDATIVE PROPERTIES OF HX-1920 IN PREVENTING DRUG-INDUCED NEPHROTOXICITY
- "C-13 Hepatocyte growth factor reduces cisplatin-induced injury in renal epithelial LLC-PK_1 cells.
- AMELIORATION BY INHIBITOR OF PROTEIN KINASE C AND PHOSPHODIESTERASE OF LLC-PK1 CELL INJURY INDUCED BY CEPHALORIDINE
- 21D-02-3 Amelioration by Tyrosine Kinase Activation of Free Radical-Induced Injury in Renal Cells.
- O10-05 Participation of PKC in Free Radical-Induced injury in Kidney of Rats Treated with Cephaloridine.
- SIGNALLING PATHWAY INVOLVEMENT IN RENAL INJURY
- Amelioration by CAMP of Cephaloridine-Induced Injury in the Porcine Kidney Cell Line LLC-PK_1
- Ameliorative Effect of Adenosine on Hypoxia-Reoxygenation Injury in LLC-PK_1, a Porcine Kidney Cell Line
- Participation of ERK activation in cephaloridineinduced injury in rat renal cortical slices.(GENERAL SESSION BY ORAL PRESENTATION)(KIDNEYS AND URINARY EXCRETION SYSTEM)
- Effect of N-N'-diphenyl-p-phenylenediamine pretreatment on urinary enzyme excretion in cisplatin nephrotoxicity in rats.
- Cisplatin-induced injury to calcium uptake by mitochondria in glutathione-depleted slices of rat kidney cortex.
- The Iron Chelator Deferoxamine Prevents Cisplatin-Induced Lipid Peroxidation in Rat Kidney Cortical Slices.
- Stimulatory effect of cisplatin on production of lipid peroxidation in renal tissues.
- Effect of cisplatin on in vitro production of lipid peroxides in rat kidney cortex.
- In Vitro Oxygenation Injury to Slices Prepared from Ischemic Kidney in Rats.
- Use of cultured renal epithelial cells for the study of cisplatin toxicity.
- W2-4 CULTURED RENAL EPITHELIAL CELLS