Evaluation of Nonuniform Strain in Carbon Nanotube with Bend Junction
スポンサーリンク
概要
- 論文の詳細を見る
Carbon nanotubes (CNTs) have been attracting attention because of their prominent mechanical and electronic properties. In this study, we investigate the deformation of single-walled carbon nanotubes (SWCNTs) with a bend junction using molecular dynamics in order to analyze strain concentration due to the tube shape (macroscopic effect) and the membered ring shape (microscopic effect). At first, we propose a method for evaluating the local strain at each memberded ring. Then, we analyze the strain concentration at the bend junction due to the both of macroscopic and microscopic effects. The strain concentration caused by the microscopic effect is separated by a rough analysis; and it is about 1.5 times higher than that caused by the macroscopic effect.
- 一般社団法人 日本機械学会の論文
著者
-
Umeno Yoshitaka
Department Of Engineering Physics And Mechanics Graduate School Of Engineering Kyoto University
-
Kitamura Takayuki
Department Of Anesthesia And Pain Relief Center The University Of Tokyo Hospital
-
KINOSHITA Yusuke
Department of Mechanical Engineering and Science, Kyoto University
-
UMENO Yoshitaka
Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo
関連論文
- Cerebral Venous Sinus Thrombosis Associated With Iron Deficiency : Two Case Reports
- Effect of Loading Frequency on Fatigue Crack Growth between a Submicron-Thick Film and a Substrate(Macro-, Micro-, Meso-, and Nano-scopic Strength of Materials Relating to Microstructures)
- Development of Interatomic Potential for Pb(Zr, Ti)O3 Based on Shell model
- Central neurocytoma expressing characteristics of ependymal differentiation : electron microscopic findings of two cases
- Road Map of Micro-Engineering and Nano-Engineering from Manufacturing and Mechanical Engineering Viewpoints(Micro Mechanical Engineering)
- MICROCRACKING BEHAVIOR AND LIFE LAW OF FATIGUE IN A CAST TiAl INTERMETALLIC COMPOUND AT HIGH TEMPERATURE
- Atomic Mechanics Simulation on Nucleation Process of Grain Boundary Groove in Aluminum Conductor of Microelectronic Packages
- EFFECT OF INTERNAL CREEP MICROCRACKS ON FATIGUE MACROCRACK PROPAGATION AT HIGH TEMPERATURES
- 916 Evaluation of Interface Strength at Free Edge between Thin Films
- Paramedian Suboccipital Mini-Craniectomy for Evacuation of Spontaneous Cerebellar Hemorrhage
- Pituitary Stone : Case Report
- High-performance self-expanding stent graft : development and application to experimental aneurysms
- Nucleation of Slip Bands near Twin Boundary in High-Cycle Fatigue
- Applicability of Fracture Mechanics on Brittle Delamination of Nanoscale Film Edge
- MN-05 ON THE MODELLING OF STRESS SINGULARITY AT THE INTERFACE EDGE BETWEEN PIEZOELECTRIC THIN FILM AND ELASTIC SUBSTRATE
- Slip Behavior near Interface of Two-phase (α/γ) Stainless Steel Bicrystal in High Cycle Fatigue(Fatigue 2)
- Development of in-situ TEM Observation Method on Plasticity in Nanoscale Component
- Analysis of Direct Current Potential Field around Multiple Spherical Defects
- Numerical Simulation of Microstructurally-Short-Crack Propagation in Creep : Solid-Mechanics, Strength of Materials
- Cerebral Ischemia Promotes Rich Pseudopalisading Necrosis in the Rat C6 Glioblastoma Model
- Inverse Analysis of Distribution of Internal Small Defects
- Analysis of Direct Current Potential Difference in a Multiple-Cracked Material
- Molecular Dynamics Study on Grain Boundary Diffusion in Aluminum under Hydrostatic Stress
- Atomic Simulation on Deformation and Fracture of Nano-Single Crystal of Nickel in Tension
- A Numerical Simulation on Stress-Induced Failure in Aluminum Conductors of a Microelectronic Package based on Surface and Grain Boundary Diffusion
- Direct Measurement of Interface Strength between Copper Submicron-Dot and Silicon Dioxide Substrate(Advanced Technology of Experimental Mechanics)
- B26-052 STRENGTH OF SMALL COMPONENTS
- Simultaneous Analysis of Consciousness and Hemodynamics during Therapeutic Total Spinal Anesthesia
- Atomistic Simulation on the Phase Transformation of Silicon under Nonhydrostatic Stress
- Phase Transformation of Silicon under Nonhydrostatic Stress State: Formation of Si II Phase under a Round Indenter
- Surface crack propagation in plate specimens of 1Cr-1Mo-1/4V turbine rotor steel under creep-fatigue condition.
- Evaluation of Nonuniform Strain in Carbon Nanotube with Bend Junction