Applicability of Fracture Mechanics on Brittle Delamination of Nanoscale Film Edge
スポンサーリンク
概要
- 論文の詳細を見る
The stress concentration near the interface edge of a film/substrate, which dominates the delamination, is analyzed by molecular dynamics (MD) analysis. Here, the film thickness is on the nanoscale and the interatomic interaction is simulated by Morse-type model potentials. Three types of load are applied to the film/substrate to examine the effect of the stress-concentrated region on the delamination at the interface edge. At lower applied load, the stress distribution along the interface near the edge in the MD simulation coincides well with that obtained by linear elastic analysis (FEM: Finite Element Method). However, after the stress near the edge reaches the ideal strength of the interface, it deviates from the FEM result. The delamination crack is initiated from the free edge when the stress at y<1nm (y: distance from the edge) reaches the ideal interface strength. This signifies the criterion of interface toughness that the delamination is governed by the stress in the region (process zone). This also suggests the limit of applicability of linear elastic fracture mechanics on the nanoscale components.
- 一般社団法人日本機械学会の論文
- 2004-04-15
著者
-
HIRAKATA Hiroyuki
Department of Mechanical Engineering and Science, Kyoto University
-
KITAMURA Takayuki
Department of Mechanical Engineering and Science, Kyoto University
-
Kitamura Takayuki
Department Of Engineering Physics And Mechanics Kyoto University
-
SATAKE Yusuke
Graduate School of Informatics, Kyoto University
-
Satake Yusuke
Graduate School Of Informatics Kyoto University
-
Hirakata Hiroyuki
Department Of Engineering Physics And Mechanics Kyoto University
-
Kitamura Takayuki
Department Of Economics Kanagawa University
-
Kitamura Takayuki
Department Of Anesthesia And Pain Relief Center The University Of Tokyo Hospital
関連論文
- Effect of Loading Frequency on Fatigue Crack Growth between a Submicron-Thick Film and a Substrate(Macro-, Micro-, Meso-, and Nano-scopic Strength of Materials Relating to Microstructures)
- Development of Interatomic Potential for Pb(Zr, Ti)O3 Based on Shell model
- Central neurocytoma expressing characteristics of ependymal differentiation : electron microscopic findings of two cases
- Road Map of Micro-Engineering and Nano-Engineering from Manufacturing and Mechanical Engineering Viewpoints(Micro Mechanical Engineering)
- MICROCRACKING BEHAVIOR AND LIFE LAW OF FATIGUE IN A CAST TiAl INTERMETALLIC COMPOUND AT HIGH TEMPERATURE
- Atomic Mechanics Simulation on Nucleation Process of Grain Boundary Groove in Aluminum Conductor of Microelectronic Packages
- EFFECT OF INTERNAL CREEP MICROCRACKS ON FATIGUE MACROCRACK PROPAGATION AT HIGH TEMPERATURES
- 916 Evaluation of Interface Strength at Free Edge between Thin Films
- Paramedian Suboccipital Mini-Craniectomy for Evacuation of Spontaneous Cerebellar Hemorrhage
- Pituitary Stone : Case Report
- Nucleation of Slip Bands near Twin Boundary in High-Cycle Fatigue
- Applicability of Fracture Mechanics on Brittle Delamination of Nanoscale Film Edge
- MN-05 ON THE MODELLING OF STRESS SINGULARITY AT THE INTERFACE EDGE BETWEEN PIEZOELECTRIC THIN FILM AND ELASTIC SUBSTRATE
- Slip Behavior near Interface of Two-phase (α/γ) Stainless Steel Bicrystal in High Cycle Fatigue(Fatigue 2)
- Development of in-situ TEM Observation Method on Plasticity in Nanoscale Component
- Analysis of Direct Current Potential Field around Multiple Spherical Defects
- Numerical Simulation of Microstructurally-Short-Crack Propagation in Creep : Solid-Mechanics, Strength of Materials
- Inverse Analysis of Distribution of Internal Small Defects
- Analysis of Direct Current Potential Difference in a Multiple-Cracked Material
- Molecular Dynamics Study on Grain Boundary Diffusion in Aluminum under Hydrostatic Stress
- Atomic Simulation on Deformation and Fracture of Nano-Single Crystal of Nickel in Tension
- A Numerical Simulation on Stress-Induced Failure in Aluminum Conductors of a Microelectronic Package based on Surface and Grain Boundary Diffusion
- Direct Measurement of Interface Strength between Copper Submicron-Dot and Silicon Dioxide Substrate(Advanced Technology of Experimental Mechanics)
- OS5(3)-11(OS05W0236) Evaluation of Interface Strength of Micro-Components by AFM
- B26-052 STRENGTH OF SMALL COMPONENTS
- Resource Allocation within Multi-divisional Organization: The Case of the Multinational Enterprise
- Simultaneous Analysis of Consciousness and Hemodynamics during Therapeutic Total Spinal Anesthesia
- Atomistic Simulation on the Phase Transformation of Silicon under Nonhydrostatic Stress
- Phase Transformation of Silicon under Nonhydrostatic Stress State: Formation of Si II Phase under a Round Indenter
- Surface crack propagation in plate specimens of 1Cr-1Mo-1/4V turbine rotor steel under creep-fatigue condition.
- Evaluation of Nonuniform Strain in Carbon Nanotube with Bend Junction