Direct Measurement of Interface Strength between Copper Submicron-Dot and Silicon Dioxide Substrate(<Special Issue>Advanced Technology of Experimental Mechanics)
スポンサーリンク
概要
- 論文の詳細を見る
We develop an experimental evaluation method of interface strength for ductile submicron-dots on a hard substrate without collapse of the dot. The validity is examined by a copper (Cu) submicron-dot on a silicon dioxide (SiO_2) substrate with the rigid-layer of tungsten (W), which restrains the deformation and decreases the influence of complicated stress field due to the contact of tip. The diamond tip is dragged horizontally along the SiO_2 surface and the load is applied to the side edge of the W layer at a constant displacement rate using a modified atomic force microscopy. Both the lateral and the vertical load and displacement are continuously monitored during the test. The lateral load, F_1, increases almost in proportion to the lateral displacement, δ_1, and the Cu dot with the W layer is clearly separated from the SiO_2 along the interface. The restraint by the W layer works well so that there are little damages in both the delaminated W/Cu dot and the substrate. The delamination lateral load, F_<1C>, is successfully measured.
- 一般社団法人日本機械学会の論文
- 2004-07-15
著者
-
Hirakata Hiroyuki
Department Of Engineering Physics And Mechanics Kyoto University
-
Kitamura Takayuki
Department Of Economics Kanagawa University
-
YAMAMOTO Yoshitake
Graduate School of Engineering Physics and Mechanics, Kyoto University
-
Yamamoto Yoshitake
Graduate School Of Engineering Physics And Mechanics Kyoto University
-
Kitamura Takayuki
Department Of Anesthesia And Pain Relief Center The University Of Tokyo Hospital
関連論文
- Effect of Loading Frequency on Fatigue Crack Growth between a Submicron-Thick Film and a Substrate(Macro-, Micro-, Meso-, and Nano-scopic Strength of Materials Relating to Microstructures)
- Development of Interatomic Potential for Pb(Zr, Ti)O3 Based on Shell model
- Central neurocytoma expressing characteristics of ependymal differentiation : electron microscopic findings of two cases
- Road Map of Micro-Engineering and Nano-Engineering from Manufacturing and Mechanical Engineering Viewpoints(Micro Mechanical Engineering)
- MICROCRACKING BEHAVIOR AND LIFE LAW OF FATIGUE IN A CAST TiAl INTERMETALLIC COMPOUND AT HIGH TEMPERATURE
- Atomic Mechanics Simulation on Nucleation Process of Grain Boundary Groove in Aluminum Conductor of Microelectronic Packages
- EFFECT OF INTERNAL CREEP MICROCRACKS ON FATIGUE MACROCRACK PROPAGATION AT HIGH TEMPERATURES
- 916 Evaluation of Interface Strength at Free Edge between Thin Films
- Paramedian Suboccipital Mini-Craniectomy for Evacuation of Spontaneous Cerebellar Hemorrhage
- Pituitary Stone : Case Report
- Nucleation of Slip Bands near Twin Boundary in High-Cycle Fatigue
- Applicability of Fracture Mechanics on Brittle Delamination of Nanoscale Film Edge
- MN-05 ON THE MODELLING OF STRESS SINGULARITY AT THE INTERFACE EDGE BETWEEN PIEZOELECTRIC THIN FILM AND ELASTIC SUBSTRATE
- Slip Behavior near Interface of Two-phase (α/γ) Stainless Steel Bicrystal in High Cycle Fatigue(Fatigue 2)
- Development of in-situ TEM Observation Method on Plasticity in Nanoscale Component
- Analysis of Direct Current Potential Field around Multiple Spherical Defects
- Numerical Simulation of Microstructurally-Short-Crack Propagation in Creep : Solid-Mechanics, Strength of Materials
- Inverse Analysis of Distribution of Internal Small Defects
- Analysis of Direct Current Potential Difference in a Multiple-Cracked Material
- Molecular Dynamics Study on Grain Boundary Diffusion in Aluminum under Hydrostatic Stress
- Atomic Simulation on Deformation and Fracture of Nano-Single Crystal of Nickel in Tension
- A Numerical Simulation on Stress-Induced Failure in Aluminum Conductors of a Microelectronic Package based on Surface and Grain Boundary Diffusion
- Direct Measurement of Interface Strength between Copper Submicron-Dot and Silicon Dioxide Substrate(Advanced Technology of Experimental Mechanics)
- OS5(3)-11(OS05W0236) Evaluation of Interface Strength of Micro-Components by AFM
- B26-052 STRENGTH OF SMALL COMPONENTS
- Resource Allocation within Multi-divisional Organization: The Case of the Multinational Enterprise
- Simultaneous Analysis of Consciousness and Hemodynamics during Therapeutic Total Spinal Anesthesia
- Atomistic Simulation on the Phase Transformation of Silicon under Nonhydrostatic Stress
- Phase Transformation of Silicon under Nonhydrostatic Stress State: Formation of Si II Phase under a Round Indenter
- Surface crack propagation in plate specimens of 1Cr-1Mo-1/4V turbine rotor steel under creep-fatigue condition.
- Evaluation of Nonuniform Strain in Carbon Nanotube with Bend Junction