Glutamate Metabolism in a Glutamate-producing Bacterium, Brevibacterium flavum
スポンサーリンク
概要
- 論文の詳細を見る
Brevibacterium flavum No. 2247 was found to grow with L-glutamate as the sole carbon and nitrogen source on an agar-plate medium when high concentrations of L-glutamate, FeSO4 and biotin were added to the medium. It grew on L-glutamate in liquid medium only when yeast extract or high concentrations of FeSO4 and glucose or organic acids of the tricarboxylic acid cycle were added to the medium. The growth on L-glutamate in liquid medium was also stimulated by high concentrations of L-glutamate, biotin and MgSO4, and inhibited by a high concentration of (NH4)2SO4. Aspartate aminotransferase (TA)- and α-ketoglutarate dehydrogenase (KD)-defective mutants did not grow on L-glutamate, and glutamate-utilizing revertants derived from these mutants recovered TA and KD activity, respectively, whereas glutamate dehydrogenase (GD)-defective mutants grew on L-glutamate. Washed cells of strain No. 2247 grown on glutamate decomposed the amino acid, whereas those grown on glucose did not. The degradation was observed only under aerobic conditions. The former cells showed higher KD, succinate dehydrogenase and fumarase activities than the latter cells. Of 75 mutants which did not grow on glutamate but grew on succinate, three strains lacked KD but showed the same glutamate productivity as the parent strain. Four other strains with normal KD levels showed higher glutamate productivity than the parent.
- 社団法人 日本農芸化学会の論文
著者
-
Ozaki Hachiro
Central Research Laboratories Ajinomoto Co. Inc.
-
Mori Michiko
Central Research Laboratories Ajinomoto Co. Ltd.
-
Shiio Isamu
Central Research Laboratories Ajinomoto Co. Inc.
関連論文
- Multiple Interaction of Fructose 1,6-Bisphosphate and Other Effectors on Phosphoenolpyruvate Carboxylase from Brevibacterium flavum and Its Aspartate-producing Mutant(Biological Chemistry)
- Dihydrodipicolinate Synthase Deficiency of Brevibacterium flavum Strain BB69, a Threonine-producing Mutant with a Feedback-resistant Homoserine Dehydrogenase(Microbiology & Fermentation Industry)
- Isolation and Properties of Dihydrodipicolinate Synthase-Defective Threonine-Producing Mutants from a Brevibacterium flavum Strain with Feedback-sensitive Aspartokinase(Microbiology & Fermentation Industry)
- Effects of Reduced Citrate Synthase Activity and Feedback-resistant Phosphoenolpyruvate Carboxylase on Lysine Productivities of Brevibacterium flavum Mutants(Microbiology & Fermentation Industry)
- Isolation and Properties of Lysine-producing Mutants with Feedback-resistant Aspartokinase Derived from a Brevibacterium flavum Strain with Citrate Synthase- and Pyruvate Kinase-defects and Feedback-resistant Phosphoenolpyruvate Carboxylase(Microbiology &
- Isolation and Properties of Threonine-producing Mutants with both Dihydrodipicolinate Synthase Defect and Feedback-resistant Homoserine Dehydrogenase from Brevibacterium flavum(Microbiology & Fermentation Industry)
- Isolation and Properties of α-Ketobutyrate-resistant Lysine-producing Mutants from Brevibacterium flavum
- Effects of Carbon Source Sugars on the Yield of Amino Acid Production and Sucrose Metabolism in Brevibacterium flavum(Microbiology & Fermentation Industry)
- Breeding of Phenylalanine-producing Brevidacterium flavum Strains by Removing Feedback Regulation of Both the Two Key Enzymes in Its Biosynthesis (Microbiology & Fermentation Industry)
- Prumycin Production by Azaserine-resistant and Arginine-sensitive Mutants of Bacillus subtilis(Microbiology & Fermentation Industry)
- Regulation of Glucose-6-Phosphate Dehydrogenase in Brevibacterium flavum(Microbiology & Fermentation Industry)
- Effects of L-Serine Dehydratase Activity on L-Serine Production by Corynebacterium glycinophilum and an Examination of the Properities of the Enzyme
- Regulation of Enzymes for Erythrose 4-Phosphate Synthesis in Brevibacterium flavum(Microbiology & Fermentation Industry)
- Fructose Metabolism and Regulation of 1-Phosphofructokinase and 6-Phosphofructokinase in Brevibacterium flavum(Microbiology & Fermentation Industry)
- Pyruvate Formation and Sugar Metabolism in an Amino Acid-Producing Bacterium, Brevibacterium flavum(Microbiology & Fermentation Industry)
- Isolation of Streptomyces sp. Producing Glucose-tolerant β-Glucosidases and Properties of the Enzymes(Microbiology & Fermentation Industry)
- Production of L-Tryptophan by Sulfonamideresistant Mutants
- Mycophenolic Acid Production by Drug-resistant and Methionine or Glutamic-Acid Requiring Mutants of Penicillium brevicompactum
- Phosphoenolpyruvate: Sugar Phosphotransferase Systems and Sugar Metabolism in Brevibacterium flavum
- Production of Aspartic Acid and Lysine by Citrate Synthase Mutants of Brevibacterium flavum
- Tryptophan Synthase and Production of L-Tryptophan in Regulatory Mutants
- Production of Aspartic Acid and Enzymatic Alteration in Pyruvate Kinase Mutants of Brevibacterium flavum
- Enzymes of Common Pathway for Aromatic Amino Acid Biosynthesis in Brevibacterium flavum and Its Tryptophan-producing Mutants
- Production of Lysine by Pyruvate Kinase Mutants of Brevibacterium flavum
- Amino Acid Aminotransferases in an Amino Acid-producing Bacterium, Brevibacterium flavum
- Effect of Pyruvate Kinase Deficiency on L-Lysine Productivities of Mutants with Feedback-resistant Aspartokinases
- Regulation at Metabolic Branch Points of Aromatic Amino Acid Biosynthesis in Brevibacterium flavum
- Production of Lysine by Pyruvate Dehydrogenase Mutants of Brevibacterium flavurn
- Studies on Mechanisms for Lysine Production by Pyruvate Kinase-Deficient Mutants of Brevibacterium flavum
- Regulation of 6-Phosphogluconate Dehydrogenase in Brevibacterium flavum
- Glutamate Transport and Production in Brevibacterium flavum
- Glutamate Metabolism in a Glutamate-producing Bacterium, Brevibacterium flavum
- Threonine Production by Dihydrodipicolinate Synthase-defective Mutants of Brevibacterium flavum