Phosphoenolpyruvate: Sugar Phosphotransferase Systems and Sugar Metabolism in Brevibacterium flavum
スポンサーリンク
概要
- 論文の詳細を見る
Brevibacterium flavum mutants defective in the phosphoenolpyruvate (PEP)-dependent glucose phosphotransferase system (PTS) were selected with high frequency by 2-deoxyglucose-resistance. Most of them (DOGr) still had the fructose-PTS and grew not only on fructose but also on glucose like the wild-type strain. A mutant having 1/8th the fructose-PTS activity of the wild strain but normal glucose-PTS activity was isolated as a xylitol-resistant mutant. It grew on glucose but not on fructose. The glucose-PTS was active on glucose, glucosamine, 2-deoxyglucose and mannose, and slightly on methyl-α-glucoside and N-acetylglucosamine, but not on fructose or xylitol. The fructose-PTS acted on fructose and xylitol, and to some extent on glucose but not on glucosamine or 2-deoxyglucose. Mutants unable to grow on glucose (DOGGlc-) derived from a DOGr mutant were all defective in the fructose-PTS. All revertants able to grow on glucose derived from a DOGrGlc- mutant had the fructose-PTS. The glucokinase activity was about 2/3rds the glucose activity of the fructose-PTS. All the DOGsprGlc- mutants had normal levels of glucokinase. One of these mutants grew on maltose and sucrose, which were hydrolyzed to glucose. Thus, glucokinase seems to contribute to the phosphorylation of glucose liberated inside the cell. The fructose-PTS was induced by fructose and repressed by glucose. The glucose repression was not observed in a mutant defective in the glucose-PTS.
- 社団法人 日本農芸化学会の論文
著者
-
Mori Michiko
Central Research Laboratories Ajinomoto Co. Ltd.
-
Shiio Isamu
Central Research Laboratories Ajinomoto Co. Inc.
-
SHIIO Isamu
Central Research Laboratories, Ajinomoto Co., Ltd.
関連論文
- Multiple Interaction of Fructose 1,6-Bisphosphate and Other Effectors on Phosphoenolpyruvate Carboxylase from Brevibacterium flavum and Its Aspartate-producing Mutant(Biological Chemistry)
- Dihydrodipicolinate Synthase Deficiency of Brevibacterium flavum Strain BB69, a Threonine-producing Mutant with a Feedback-resistant Homoserine Dehydrogenase(Microbiology & Fermentation Industry)
- Isolation and Properties of Dihydrodipicolinate Synthase-Defective Threonine-Producing Mutants from a Brevibacterium flavum Strain with Feedback-sensitive Aspartokinase(Microbiology & Fermentation Industry)
- Effects of Reduced Citrate Synthase Activity and Feedback-resistant Phosphoenolpyruvate Carboxylase on Lysine Productivities of Brevibacterium flavum Mutants(Microbiology & Fermentation Industry)
- Isolation and Properties of Lysine-producing Mutants with Feedback-resistant Aspartokinase Derived from a Brevibacterium flavum Strain with Citrate Synthase- and Pyruvate Kinase-defects and Feedback-resistant Phosphoenolpyruvate Carboxylase(Microbiology &
- Isolation and Properties of Threonine-producing Mutants with both Dihydrodipicolinate Synthase Defect and Feedback-resistant Homoserine Dehydrogenase from Brevibacterium flavum(Microbiology & Fermentation Industry)
- Isolation and Properties of α-Ketobutyrate-resistant Lysine-producing Mutants from Brevibacterium flavum
- Effects of Carbon Source Sugars on the Yield of Amino Acid Production and Sucrose Metabolism in Brevibacterium flavum(Microbiology & Fermentation Industry)
- Breeding of Phenylalanine-producing Brevidacterium flavum Strains by Removing Feedback Regulation of Both the Two Key Enzymes in Its Biosynthesis (Microbiology & Fermentation Industry)
- Regulation of Glucose-6-Phosphate Dehydrogenase in Brevibacterium flavum(Microbiology & Fermentation Industry)
- Regulation of Enzymes for Erythrose 4-Phosphate Synthesis in Brevibacterium flavum(Microbiology & Fermentation Industry)
- Fructose Metabolism and Regulation of 1-Phosphofructokinase and 6-Phosphofructokinase in Brevibacterium flavum(Microbiology & Fermentation Industry)
- Pyruvate Formation and Sugar Metabolism in an Amino Acid-Producing Bacterium, Brevibacterium flavum(Microbiology & Fermentation Industry)
- Production of L-Tryptophan by Sulfonamideresistant Mutants
- Phosphoenolpyruvate: Sugar Phosphotransferase Systems and Sugar Metabolism in Brevibacterium flavum
- Production of Aspartic Acid and Lysine by Citrate Synthase Mutants of Brevibacterium flavum
- Tryptophan Synthase and Production of L-Tryptophan in Regulatory Mutants
- Production of Aspartic Acid and Enzymatic Alteration in Pyruvate Kinase Mutants of Brevibacterium flavum
- Enzymes of Common Pathway for Aromatic Amino Acid Biosynthesis in Brevibacterium flavum and Its Tryptophan-producing Mutants
- Production of Lysine by Pyruvate Kinase Mutants of Brevibacterium flavum
- Amino Acid Aminotransferases in an Amino Acid-producing Bacterium, Brevibacterium flavum
- Effect of Pyruvate Kinase Deficiency on L-Lysine Productivities of Mutants with Feedback-resistant Aspartokinases
- Regulation at Metabolic Branch Points of Aromatic Amino Acid Biosynthesis in Brevibacterium flavum
- Production of Lysine by Pyruvate Dehydrogenase Mutants of Brevibacterium flavurn
- Studies on Mechanisms for Lysine Production by Pyruvate Kinase-Deficient Mutants of Brevibacterium flavum
- Regulation of 6-Phosphogluconate Dehydrogenase in Brevibacterium flavum
- Glutamate Transport and Production in Brevibacterium flavum
- Glutamate Metabolism in a Glutamate-producing Bacterium, Brevibacterium flavum
- Threonine Production by Dihydrodipicolinate Synthase-defective Mutants of Brevibacterium flavum