Studies on Mechanisms for Lysine Production by Pyruvate Kinase-Deficient Mutants of Brevibacterium flavum
スポンサーリンク
概要
- 論文の詳細を見る
Methionine-insensitive revertants with normal homoserine dehydrogenase (HD) derived from Brevibacterium flayum mutant No. 1-231, a lysine producer with S-(2-aminoethyl)-L-cysteine (AEC) resistance, methionine sensitivity, a low HDlevel and a pyruvate kinase (PK) defect, were still AEC-resistant and PK-deficient similar to No. 1-231. But they did not produce more lysine than the original strain, No. 15-8, from which strain No. 1-231 was derived. A high lysine producing mutant, No. 22, which was derived from strain No. 1-231, selected by sensitivity to β-fluoropyruvate (FP), and was defective in HD, produced more lysine than HD-defective mutants which were derived by two-step mutation from strain No. 1-231, selected by homoserine auxotrophy. Strain No. 22 did not showFP sensitivity under the conditions tested. Amongvarious lysine-biosynthetic enzymes examined, it had a higher level of aspartate-β-semialdehyde dehydrogenase than did its parent and the latter HD-defective mutants. Strain No. 22 produced 50 g/liter of lysine as the HC1 salt when cultured for 72 hr in a mediumcontaining soybean-meal hydrolysate, methionine and 100g/liter of glucose.
- 社団法人 日本農芸化学会の論文
著者
-
Sugimoto Shin-ichi
Central Research Laboratories Ajinomoto Co. Inc.
-
Shiio Isamu
Central Research Laboratories Ajinomoto Co. Inc.
-
TORIDE Yasuhiko
Central Research Laboratories of Ajinomoto Co., Inc.
関連論文
- Multiple Interaction of Fructose 1,6-Bisphosphate and Other Effectors on Phosphoenolpyruvate Carboxylase from Brevibacterium flavum and Its Aspartate-producing Mutant(Biological Chemistry)
- Dihydrodipicolinate Synthase Deficiency of Brevibacterium flavum Strain BB69, a Threonine-producing Mutant with a Feedback-resistant Homoserine Dehydrogenase(Microbiology & Fermentation Industry)
- Isolation and Properties of Dihydrodipicolinate Synthase-Defective Threonine-Producing Mutants from a Brevibacterium flavum Strain with Feedback-sensitive Aspartokinase(Microbiology & Fermentation Industry)
- Effects of Reduced Citrate Synthase Activity and Feedback-resistant Phosphoenolpyruvate Carboxylase on Lysine Productivities of Brevibacterium flavum Mutants(Microbiology & Fermentation Industry)
- Isolation and Properties of Lysine-producing Mutants with Feedback-resistant Aspartokinase Derived from a Brevibacterium flavum Strain with Citrate Synthase- and Pyruvate Kinase-defects and Feedback-resistant Phosphoenolpyruvate Carboxylase(Microbiology &
- Isolation and Properties of Threonine-producing Mutants with both Dihydrodipicolinate Synthase Defect and Feedback-resistant Homoserine Dehydrogenase from Brevibacterium flavum(Microbiology & Fermentation Industry)
- Isolation and Properties of α-Ketobutyrate-resistant Lysine-producing Mutants from Brevibacterium flavum
- Effects of Carbon Source Sugars on the Yield of Amino Acid Production and Sucrose Metabolism in Brevibacterium flavum(Microbiology & Fermentation Industry)
- Breeding of Phenylalanine-producing Brevidacterium flavum Strains by Removing Feedback Regulation of Both the Two Key Enzymes in Its Biosynthesis (Microbiology & Fermentation Industry)
- Regulation of Glucose-6-Phosphate Dehydrogenase in Brevibacterium flavum(Microbiology & Fermentation Industry)
- Regulation of Enzymes for Erythrose 4-Phosphate Synthesis in Brevibacterium flavum(Microbiology & Fermentation Industry)
- Fructose Metabolism and Regulation of 1-Phosphofructokinase and 6-Phosphofructokinase in Brevibacterium flavum(Microbiology & Fermentation Industry)
- Pyruvate Formation and Sugar Metabolism in an Amino Acid-Producing Bacterium, Brevibacterium flavum(Microbiology & Fermentation Industry)
- Production of L-Tryptophan by Azaserine-, 6-Diazo-5-oxo-L-norleucine- and Cinnamate-resistant Mutants of Bacillus subtilis K
- Production of L-Tryptophan by Sulfonamideresistant Mutants
- Phosphoenolpyruvate: Sugar Phosphotransferase Systems and Sugar Metabolism in Brevibacterium flavum
- Production of Aspartic Acid and Lysine by Citrate Synthase Mutants of Brevibacterium flavum
- Tryptophan Synthase and Production of L-Tryptophan in Regulatory Mutants
- Production of Aspartic Acid and Enzymatic Alteration in Pyruvate Kinase Mutants of Brevibacterium flavum
- Enzymes of Common Pathway for Aromatic Amino Acid Biosynthesis in Brevibacterium flavum and Its Tryptophan-producing Mutants
- Production of Lysine by Pyruvate Kinase Mutants of Brevibacterium flavum
- Amino Acid Aminotransferases in an Amino Acid-producing Bacterium, Brevibacterium flavum
- Effect of Pyruvate Kinase Deficiency on L-Lysine Productivities of Mutants with Feedback-resistant Aspartokinases
- Regulation at Metabolic Branch Points of Aromatic Amino Acid Biosynthesis in Brevibacterium flavum
- Production of Lysine by Pyruvate Dehydrogenase Mutants of Brevibacterium flavurn
- Studies on Mechanisms for Lysine Production by Pyruvate Kinase-Deficient Mutants of Brevibacterium flavum
- Regulation of 6-Phosphogluconate Dehydrogenase in Brevibacterium flavum
- Glutamate Transport and Production in Brevibacterium flavum
- Glutamate Metabolism in a Glutamate-producing Bacterium, Brevibacterium flavum
- Threonine Production by Dihydrodipicolinate Synthase-defective Mutants of Brevibacterium flavum