Prediction of Joint angle from Muscle Activities decoded from Electrocorticograms in Primary Motor Cortex
スポンサーリンク
概要
- 論文の詳細を見る
Electrocorticography (ECoG) has drawn attention as an effective recording approach for less invasive brain-machine interfaces (BMI). Previous studies succeeded in classifying the movement direction and predicting hand trajectories from ECoGs. Despite such successful studies, there still remain considerable works for the purpose of realizing an ECoG-based BMI robot. We developed a method to predict multiple muscle activities from ECoG measurements. We also verified that ECoG signals could be effective for predicting muscle activities in time varying series for preforming sequential movements. Each ECoG signal was filtered by different bandpass filters for sensorimotor rhythms, normalized by the standard z-score, and smoothed by a Gaussian filter. We used sparse linear regression to find the best fit between frequency bands of ECoG and electromyogram (EMG). We also predicted angle of 4 DOF robot arm from the decoded EMG using 3-layer neural network. Consequently, this study shows that it could derive online prediction of angle of robot arm from ECoG signals.
- 2012-11-09
著者
-
Isa Tadashi
National Institute For Physiological Sciences National Institute For Natural Sciences
-
Koike Yasuharu
Precision And Intelligen Laboratory Tokyo Institute Of Technology
-
Shin Duk
Toyota Central R&d Laboratories Inc.
-
WATANABE Hidenori
National Institute for Physiological Sciences, National Institute of Natural Science
-
KAMBARA Hiroyuki
Precision and Intelligence Laboratory, Tokyo Institute of Technology
-
SHIN Duk
Precision and Intelligence Laboratory, Tokyo Institute of Technology
-
NAKANISHI Yasuhiko
Precision and Intelligence Laboratory, Tokyo Institute of Technology
-
YOSHIMURA Natsue
Precision and Intelligence Laboratory, Tokyo Institute of Technology
-
NAMBU Atsushi
National Institute for Physiological Sciences, National Institutes of Natural Sciences
-
NISHIMURA Yukio
National Institute for Physiological Sciences, National Institutes of Natural Sciences
-
NISHIMURA Yukio
National Institute for Physiological Sciences, National Institute of Natural Science
-
NAMBU Atsushi
National Institute for Physiological Sciences, National Institute of Natural Science
関連論文
- 筋肉骨格系に基づく人腕の順動力学モデル
- 筋電信号を用いた指関節角度推定(ヒューマンコミュニケーショングループ(HCG)シンポジウム)
- 物体の重さ比較時の知覚に関する研究
- 筋肉骨格系の数式モデルによる腕のスティフネスの推定(バイオサイバネティックス,ニューロコンピューティング)
- 表面筋電信号を用いた人腕のインピーダンスの推定
- 筋肉骨格系の数式モデルによる腕のスティフネスの推定
- Load-on-Taskにおける腕の運動制御に関する研究
- Two-Handed Multi-Fingers String-Based Haptic Interface Device
- 準教師有学習を用いたBCIのためのEEGのオンラインクラスタリング
- REAL-TIME RIGID BODY SIMULATION FOR POLYHEDRAL OBJECT BASED ON ACCURATE PENALTY METHOD
- Learning and Control Model of the Arm for Loading
- Graph Representation of Images in Scale-Space with Application to Face Detection(Special Issue on Multiresolution Analysis)
- BMIと運動制御 (第48回日本リハビリテーション医学会 学術集会/千葉 パネルディスカッション Brain-Machine Interface(BMI)でImpairmentに切り込む)
- スティフネスが重さ知覚に与える影響
- The current status and future perspective of the Japanese Monkey Bio-resource Project
- Prediction of Joint angle from Muscle Activities decoded from Electrocorticograms in Primary Motor Cortex
- Prediction of Joint angle from Muscle Activities decoded from Electrocorticograms in Primary Motor Cortex