数学的ミスコンセプションのモデル化 : 小数の法則を事例として
スポンサーリンク
概要
- 論文の詳細を見る
In prior studies, it has been pointed out that misconceptions play important roles in processes of mathematical teaching and learning. The research objective of this article is the development of the theoretical framework in order to inquire misconceptions from the viewpoint of conception model. Regarding to this objective, the model of condition of conception is constructed. This model is "tetrahedral model of static aspect of conception", which consists of "object / reference context as 'event'" (O), "sign / symbol as 'event'" (S), 'notion' (N) and 'conviction' (C). This is based on Steinbring's framework "the epistemological triangle" and on Mizoguchi's model "the C(C,N,E) model" (these letters C and N have different meaning from those in the tetrahedral model), and shows that O, S and N are nothing but connected indirectly by C. N means learner's concept, ambiguous idea, knowledge, or mental model. C means learner's attitude towards mathematics or mathematical knowledge. 'Event' means learner's practical experience which is laden with N and C. Then, O is object / reference context which is laden with N and C, and S is sign / symbol which is laden with N and C. The tetrahedral model can identify relatively misconception, because this model can describe context of mathematics teaching and learning through N. [figure] There is probability misconception of "the law of small numbers". This misconception makes learners believe that a small sample will be representative of a large sample. The misconception of the law of small numbers is characterized as Fig. 2. "Small sample" and "fraction numerals as probability based on equiprobability" cannot be linked by "classical probability and frequentistic probability". They are connected by determinism. This argument is justified by interpreting history of probability and resilience of misconception. [figure]
- 全国数学教育学会の論文
- 2012-00-00
著者
関連論文
- 1G2-G3 操作から構造に進む理解過程の分析 : 2項定理を事例として(科学教育各論,一般研究発表,次世代の科学力を育てる-社会とのグラウンディングを求めて-)
- 高校数学における論証指導--Sylvesterの定理に向けた局所的組織化 (特集 高校 新学習指導要領の実施へ向けて)
- F16 確率領域におけるミスコンセプションに関する一考察 : 確率概念の多義性からみた克服の障害(F【関数、確率・統計】,論文発表の部)
- 高校数学における論証指導 : Sylvesterの定理に向けた局所的組織化(高校新学習指導要領の実施へ向けて)
- 3G2-F5 数学的コンセプションの変容に関する記号論的考察(科学教育各論(2),一般研究,次世代の科学力を育てる : 社会とのグラウンディングを実現するために)
- 算数・数学学習におけるミスコンセプションに関する研究(第III編 平成22年度数学教育学修士論文要約)
- 数学教育における目的・目標論再考 (特集 私の考える数学教育の意義)
- 数学教育における目的・目標論再考(私の考える数学教育の意義)
- 操作から構造に進む理解過程の分析 : 2項定理を事例として
- 数学的ミスコンセプションのモデル化 : 小数の法則を事例として
- 確率コンセプションの共生発生に関する一考察
- 数学的ミスコンセプションの弾性に関する一考察 : 〈小数の法則〉に焦点をあてて
- 数学教師を目指す教育学部初年次学生の論証認識に関する考察