数学的ミスコンセプションの弾性に関する一考察 : 〈小数の法則〉に焦点をあてて
スポンサーリンク
概要
- 論文の詳細を見る
In previous studies, it has been reported that misconceptions have some resilience. The resilience is recursivity with misconceptions or fragility with conception, and one of the important natures in mathematical recognition process. Many studies in mathematics education, however, have not regarded this nature as the subject matter of researches. The purpose in this paper is to address the resilience of misconception. Particularly, this paper focuses on misconception of the law of small numbers (MLSN), which makes learners believe that a small sample will be representative a population. For this purpose, a tetrahedral model of static aspect of conception (TMSC), which is based on Steinbring's framework (i.e., the epistemological triangle) and on Mizoguchi's model (i.e., the C(C,N,E) model), is used as interpretative framework. TMSC consists of four components which are 'object/reference' (O), 'sign/symbol' (S), 'notion' (N) and 'conviction' (C) (the C and N in these four letters have different meaning from those in the C(C,N,E) model). N means learner's concept, ambiguous idea, knowledge, or mental model. C means learner's attitude towards mathematics or mathematical knowledge. O means learner's practical experience on object or reference context, which are laden with N and C. S then means learner's practical experience on sign or symbol, which are laden with N and C. One solid line and three broken lines show whether four components connect directly or indirectly with each other. TMSC as a whole means that O, S and N are nothing but connected indirectly by C. With this model, misconceptions are characterized as "non-shift of only C." MLSN is then identified by TMSC: [O] small sample; [S] population; [N] the law of large numbers; [C] determinism. [figure] The resilience of MLSN results from a kind of firmness. One of sources bringing firmness to misconceptions is a traility of C. In case of 'MLSN', which has probability as O, the C has three aspects as the traility: 1) nature of knowledge of probability; 2) attitude towards phenomena; 3) symbolic notation of number. The shift of C in 'MLSN' can be characterized as Fig. 3. That is, transitions of three aspects of C need shifting C itself, so it is difficult. The determinism as C in 'MLSN' means that a transition of one aspect of 1)〜3) does not occur at least. [figure]
著者
関連論文
- 1G2-G3 操作から構造に進む理解過程の分析 : 2項定理を事例として(科学教育各論,一般研究発表,次世代の科学力を育てる-社会とのグラウンディングを求めて-)
- 高校数学における論証指導--Sylvesterの定理に向けた局所的組織化 (特集 高校 新学習指導要領の実施へ向けて)
- F16 確率領域におけるミスコンセプションに関する一考察 : 確率概念の多義性からみた克服の障害(F【関数、確率・統計】,論文発表の部)
- 高校数学における論証指導 : Sylvesterの定理に向けた局所的組織化(高校新学習指導要領の実施へ向けて)
- 3G2-F5 数学的コンセプションの変容に関する記号論的考察(科学教育各論(2),一般研究,次世代の科学力を育てる : 社会とのグラウンディングを実現するために)
- 算数・数学学習におけるミスコンセプションに関する研究(第III編 平成22年度数学教育学修士論文要約)
- 数学教育における目的・目標論再考 (特集 私の考える数学教育の意義)
- 数学教育における目的・目標論再考(私の考える数学教育の意義)
- 操作から構造に進む理解過程の分析 : 2項定理を事例として
- 数学的ミスコンセプションのモデル化 : 小数の法則を事例として
- 確率コンセプションの共生発生に関する一考察
- 数学的ミスコンセプションの弾性に関する一考察 : 〈小数の法則〉に焦点をあてて
- 数学教師を目指す教育学部初年次学生の論証認識に関する考察