OS0708 高強度鋼のギガサイクル疲労における寸法効果(構造用材料の疲労挙動と寿命評価,オーガナイズドセッション)
スポンサーリンク
概要
- 論文の詳細を見る
Gigacycle fatigue tests were conducted for SUP7 spring steel using φ7×20 mm and φ3 mm specimens whose risk volumes were 912 and 33 mm^3, respectively. In these tests, all specimens ended in fish-eye fracture whose origin was an Al_2O_3 inclusion. As the result, the φ7×20 mm specimens revealed much lower gigacycle fatigue strength, showing larger inclusions at the fish-eye fracture origins.
- 一般社団法人日本機械学会の論文
- 2009-07-24
著者
関連論文
- 高強度鋼のギガサイクル疲労と超音波疲労試験
- Ti–6Al–4V合金のギガサイクル疲労特性における応力比の影響
- 1348 炭素鋼S40Cのギガサイクル疲労特性(S22-2 中炭素鋼・ステンレス鋼・Ni基合金,S22 ギガサイクル疲労)
- 高強度鋼の疲労特性に及ぼす応力比の影響
- 高強度鋼のギガサイクル疲労特性に関する研究
- 各種ばね鋼SUP7の10^回疲労特性(鉄鋼材料,ギガサイクル疲労)
- 高強度鋼のギガサイクル疲労における介在物寸法と種類の重要性
- ばね鋼SUP7のギガサイクル疲労特性(その2)
- 430℃と500℃で焼戻されたばね鋼SUP7の1010サイクル疲労特性
- 超音波疲労試験を利用した介在物検査手法
- ばね鋼SUP7の10^サイクル疲労特性
- 低温焼戻しSNCM439鋼のギガサイクル疲労特性に及ぼす繰返し速度の影響
- 1800MPa級ばね鋼のギガサイクル疲労特性と介在物起点
- 1800 MPa 級ばね鋼のギガサイクル疲労特性
- ギガサイクル疲労特性に及ぼす繰返し速度の影響
- 1800MPa級ばね鋼ビレット材のギガサイクル疲労特性
- チタン合金の疲労データシート
- 2035 高周波焼入れした機械構造用鋼のギガサイクル疲労特性(S11-3 表面処理・応力比等の影響,S11 金属材料の超高サイクル疲労特性の解明)
- 加工硬化したオーステナイト系ステンレス鋼SUS316Lの疲労特性に及ぼす水素の影響(水素エネルギーシステムに使用される材料の強度問題)
- 202 原子間力顕微鏡による改良オースフォームした焼もどしマルテンサイト鋼の不均一塑性変形のナノスケール解析(GS2 ナノ23)
- 化学機械研磨(CMP)処理を利用した中炭素鋼焼もどしマルテンサイトの微細組織観察法の開発
- 改良オースフォームした中炭素鋼焼もどしマルテンサイト組織の不均一塑性変形のAFM解析
- 原子間力顕微鏡による中炭素鋼焼もどしマルテンサイト組織の降伏点近傍における不均一塑性変形の解析
- 中炭素鋼焼もどしマルテンサイト組織の不均一塑性変形の解析
- マグネシウム合金AZ61及びAZ31押出し材の疲労特性
- 2032 引張平均応力下における高強度鋼の疲労特性(S11-2 軸荷重下の超高サイクル疲労特性,S11 金属材料の超高サイクル疲労特性の解明)
- Ti-6Al-4V合金の疲労特性に及ぼす応力比の影響(力学特性)
- 超微細フェライト-セメンタイト組織鋼の疲労特性に及ぼす強化機構の影響(力学特性)
- 上・下降伏を示さない超微細粒フェライト鋼
- 窒化した超微細フェライト-セメンタイト組織鋼の疲労特性に及ぼす諸因子の影響(力学特性)
- 2029 水素チャージした高強度鋼のギガサイクル疲労特性(S11-1 高強度鋼・高硬度鋼の超高サイクル疲労,S11 金属材料の超高サイクル疲労特性の解明)
- OS0718 マグネシウム合金AZ61及びAZ31押出し材の疲労特性(構造用材料の疲労挙動と寿命評価,オーガナイズドセッション)
- 高強度鋼の疲労特性に及ぼす応力比の影響
- Ti-6 Al-4V合金の疲労特性に及ぼす応力比の影響と高応力比側疲労寿命評価法の提案
- SUS304ステンレス鋼の応力集中部における水素集積の銀デコレーション法を用いた可視化
- OS0708 高強度鋼のギガサイクル疲労における寸法効果(構造用材料の疲労挙動と寿命評価,オーガナイズドセッション)
- 高周波焼入れした炭素鋼S40Cのギガサイクル疲労特性(力学特性)
- 平行部を有するダンベル型試験片による超音波疲労試験
- 302 高強度鋼の内部破壊における繰返し速度の影響(GS1(1) 変形,破壊挙動,疲労,クリープ,衝撃)
- 低合金鋼のギガサイクル疲労特性に及ぼす水素の影響(力学特性)
- 引張平均応力下における高強度鋼の超音波疲労特性
- 1344 種々の溶解法で作製した高強度鋼のギガサイクル疲労特性(S22-1 高強度鋼,S22 ギガサイクル疲労)
- 高強度鋼のギガサイクル疲労特性に及ぼす介在物とODA寸法の影響(力学特性)
- 改良オースフォームを適用したSCM440鋼の高サイクル疲労特性(第1報,1600MPa級焼入れ焼戻し材と改良オースフォーム材の疲労特性)
- 2308 Ti合金の疲労特性の検討(S07-2 非鉄材料の疲労特性,S07 構造材料の疲労強度とき裂進展問題)
- 303 Ti-6Al-4V合金のギガサイクル疲労特性における応力比効果(GS1(1) 変形,破壊挙動,疲労,クリープ,衝撃)
- Ti-6Al-4V合金のギガサイクル疲労特性における速度効果(非鉄材料,ギガサイクル疲労)
- Ti-6Al-4V合金の表面破壊疲労特性における速度効果
- K-0519 ギガサイクル疲労特性に及ぼす介在物と組織の影響(S04-2 高強度鋼の超高サイクル疲労(1))(S04 金属材料の組織と疲労強度信頼性)
- 高強度鋼の介在物とギガサイクル疲労特性の評価 : その3 : 最大介在物径予測に及ぼす清浄度評価方法の影響
- 高強度鋼の介在物とギガサイクル疲労特性の評価 : その2 : 介在物とギガサイクル疲労特性の関係
- 高強度鋼の介在物とギガサイクル疲労特牲の評価 : その1 : 供試材のギガサイクル疲労特性
- 介在物軟質化した弁ばね鋼に対する疲労試験による介在物検査の妥当性(鉄鋼材料,ギガサイクル疲労)
- 疲労試験を利用したTiN介在物の検査法
- 超音波疲労試験を利用した介在物検査法
- 1346 改良オースフォームを適用したV添加鋼のギガサイクル疲労特性(S22-1 高強度鋼,S22 ギガサイクル疲労)
- 改良オースフォームを適用したV添加鋼のギガサイクル疲労特性(表面処理・腐食)
- Si-Mn鋼のギガサイクル疲労特性に及ぼす改良オースフォームの影響
- 304 低合金鋼のギガサイクル疲労特性に及ぼす水素の影響(GS1(1) 変形,破壊挙動,疲労,クリープ,衝撃)
- 焼戻しマルテンサイト鋼のナノ領域強度解析
- 焼き戻しマルテンサイト鋼のナノスコピック強度解析
- プラズマ窒化を施した超微細フェライト-セメンタイト組織鋼の疲労特性(力学特性)
- 309 プラズマ窒化を施した超微細粒鋼の疲労特性(GS7 疲労13)
- プラズマ窒化を施した低合金鋼の疲労特性
- 改良オースフォームを適用したV添加鋼のギガサイクル疲労特性
- 改良オースフォームを適用したV添加鋼の高サイクル疲労特性
- 601 1000MPa級超微細粒鋼の疲労特性(GS18 疲労43)
- ばね鋼SUP7のギガサイクル疲労特性に及ぼす試験片寸法の影響
- 球状黒鉛鋳鉄のギガサイクル疲労特性
- OS1508 加工硬化したオーステナイト系ステンレス鋼SUS316Lの疲労特性に及ぼす水素の影響(OS15-02 表面処理および加工の影響,OS15 金属材料の超高サイクル疲労と信頼性評価)
- OS1505 プラズマ窒化を施した超微細粒鋼の疲労特性(OS15-02 表面処理および加工の影響,OS15 金属材料の超高サイクル疲労と信頼性評価)
- 引張平均応力を付与した高強度鋼の超音波疲労試験
- 1116 高強度球状黒鉛鋳鉄のギガサイクル疲労特性(OS11-4 材料の疲労挙動と損傷評価-超長寿命-)
- 1129 内部破壊を示すばね鋼の疲労特性に対する平均応力の影響(OS11-7 材料の疲労挙動と損傷評価-疲労損傷・寿命予測-)
- 1124 プラズマ窒化を施したFe-C-Mn鋼の疲労特性に及ぼすMn添加量の影響(OS11-6 材料の疲労挙動と損傷評価-表面処理・締結材-)
- 超音波疲労試験によるギガサイクル疲労評価
- 疲労データシート (特集 材料データベースが支える研究開発) -- (構造材料データシート)
- (5)高温超音波疲労試験装置の開発(論文,日本機械学会賞〔2012年度(平成24年度)審査経過報告〕)
- 水素ステ一ション蓄圧器用SCM435鋼の疲労き裂進展特性に及ぼす水素の影響
- 水素チャージした高強度鋼のギガサイクル疲労特性
- 改良オースフォームを適用したSi-Mn鋼のギガサイクル疲労特性
- OS0610 高延性球状黒鉛鋳鉄のギガサイクル疲労特性(OS6-3 材質および熱処理の影響,OS-6 金属材料の超高サイクル疲労と信頼性評価)
- OS0604 1000℃まで試験できる高温用超音波疲労試験機の開発(OS6-1 基礎疲労特性と試験法・評価法,OS-6 金属材料の超高サイクル疲労と信頼性評価)