Physics of Graphene : Zero-Mode Anomalies and Roles of Symmetry(Interaction and Nanostructural Effects in Low-Dimensional Systems)
スポンサーリンク
概要
- 論文の詳細を見る
A brief review is given on electronic and transport properties of monolayer graphene from a theoretical point of view. The topics include the effective-mass description of electronic states, topological anomaly associated with Berry's phase, singular diamagnetic susceptibility, zero-mode anomalies and their removal due to level broadening effects, the symmetry crossover among symplectic, unitary, and orthogonal due to the presence of special time reversal symmetry, and interaction with acoustic, optical, and zone-boundary phonons.
- 理論物理学刊行会の論文
- 2009-02-05
著者
-
ANDO Tsuneya
Department of Physics, Tokyo Institute of Technology
-
Ando Tsuneya
Department Of Physics Faculty Of Science University Of Tokyo
関連論文
- Diffuse Bragg Scattering in Corrugated Quantum Wells (Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties)
- Presence of Perfectly Conducting Channel in Metallic Carbon Nanotubes(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Localized Eigenstates in Carbon Nanotube Caps
- Effects of Interference and Inelastic Scattering in Aharonov-Bohm Ring with Quantum Dot(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Dynamical Conductivity in Metallic Carbon Nanotubes
- Field Effects on Optical Phonons in Bilayer Graphene(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Quantum Hall Effect on the Hofstadter Butterfly(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Electric and Magnetic Response of Multi-Wall Carbon Nanotubes(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Effective-Mass Theory of Electron Correlations in Band Structure of Semiconducting Carbon Nanotubes (Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties)
- Effective-Mass Theory of Electron Correlations in Band Structure of Semiconducting Carbon Nanotubes
- Conductivity in Carbon Nanotubes with Aharonov-Bohm Flux(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Weak-Localization in Metallic Carbon Nanotubes(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Diffuse Bragg Scattering in Corrugated Quantum Wells
- The Acceptor States in Tellurium
- Variational Calculation of Acceptor States in Tellurium
- Transverse Magneto-Conductivity of a Two-Dimensional Electron Gas
- Theory of Oscillatory g Factor in an MOS Inversion Layer under Strong Magnetic Fields
- Optical Phonon Interacting with Electrons in Carbon Nanotubes(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Theory of Hall Effect in a Two-Dimensional Electron System
- Conductance between Two Scanning-Tunneling-Microscopy Probes in Carbon Nanotubes(Condensed matter: electronic structure and electric, magnetic, and optical properties)
- Effects of Trigonal Warping on Perfect Channel in Metallic Carbon Nanotubes(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Effects of Short-Range Scatterers on Perfect Channel in Metallic Carbon Nanotubes(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Zone-Boundary Phonon in Graphene and Nanotube(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Screening Effect and Impurity Scattering in Monolayer Graphene(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Physics of Graphene : Zero-Mode Anomalies and Roles of Symmetry(Interaction and Nanostructural Effects in Low-Dimensional Systems)
- Optical Phonon Tuned by Fermi Level in Carbon Nanotubes(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Dynamical Conductivity in Disordered Quantum Wire Array(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Anomaly of Optical Phonons in Bilayer Graphene(Condensed matter : electronic structure and electrical, magnetic, and optical properties)
- Anomaly of Optical Phonon in Monolayer Graphene(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Magnetic Oscillation of Optical Phonon in Graphene(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Numerical Study of the Dynamical Conductivity in Carbon Nanotubes(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Effects of Valley Mixing and Exchange on Excitons in Carbon Nanotubes with Aharonov-Bohm Flux(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Aharonov-Bohm Effect and Symmetry Crossover in Carbon Nanotubes(Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties)
- Pseudo-Band-Structure in a Disordered Quantum Wire Array(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Theory of Cyclotron Resonance Lineshape in a Two-Dimensional Electron System
- Effects of Magnetic Field and Flux on Perfect Channel in Metallic Carbon Nanotubes (Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Screening Effect in a Disordered Electron System. : II. Application to the Impurity Band
- Theory of Quantum Transport in a Two-Dimensional Electron System under Magnetic Fields. : III. Many-Site Approximation
- Excitons in Carbon Nanotubes Revisited : Dependence on Diameter, Aharonov-Bohm Flux, and Strain(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Subband Structure of an Accumulation Layer under Strong Magnetic Fields
- Bilayer Graphene with Long-Range Scatterers Studied in a Self-Consistent Born Approximation
- Magnetophonon Resonance in Monolayer Graphene
- Theory of Transport in Graphene with Long-Range Scatterers
- Theory of Electron Scattering by Lattice Defects in Monolayer Graphene
- Weak-Field Hall Effect in Graphene Calculated within Self-Consistent Born Approximation
- Subband Structure and Inter-Subband Absorption in an Accumulation Layer in Strong Magnetic Fields
- Optical Absorption by Interlayer Density Excitations in Bilayer Graphene
- Stress Effects on Electronic Properties of Silicon Inversion Layers
- Theory of Quantum Transport in a Two-Dimensional Electron System under Magnetic Fields. : IV. Oscillatory Conductivity
- Screening Effects in a Disordered Electron System : I. General Consideration of Dielectric Function
- Theory of Quantum Transport in a Two-Dimensional Electron System under Magnetic Fields. : I. Characteristics of Level Broadening and Transpot under Strong Fields
- Diamagnetism of Graphene with Long-Range Scatterers
- Diamagnetic Response of Disordered Graphene to Nonuniform Magnetic Field
- Screening Effect and Quantum Transport in a Silicon Inversion Layer in Strong Magnetic Fields
- Broadening of Inter-Subband Transitions in Image-Potential-Induced Surface States outside Liquid Helium
- Theorty of Quantum Transport in a Two-Dimensional Electron System under Magnetic Fields : II. Single-Site Approximation under Strong Fields
- Optical Response of Finite-Length Carbon Nanotubes
- Dynamical Conductivity in Metallic Carbon Nanotubes
- Pseudo-Band-Structure of Disordered Lateral Superlattice in Magnetic Field
- Quantum Hall Effect on the Hofstadter Butterfly(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)