Effects of Uniformity in Wheel Structure on Grinding Characteristics of Vitrified CBN Wheels(CBN grinding technology)
スポンサーリンク
概要
- 論文の詳細を見る
In order to make clear the effects of the uniformity in wheel structure on the grinding performance of vitrified CBN wheels, cylindrical plunge grinding experiments have been conducted using the two types of CBN wheel manufactured by a newly proposed method and a conventional method. The improvement of uniformity in wheel structure is effective to reduce the wheel wear and the increasing rate of surface roughness with the progress of grinding. The variation in distribution of grain cutting edges decreases by improving the uniformity of wheel structure and it inhibits the reduction of a cutting edge density during the grinding process. Consequently, the estimated tool life of uniform wheel, based on the roughness of finished surface, is about 1.8 times longer than that of conventional wheel.
- 一般社団法人日本機械学会の論文
- 2005-10-18
著者
-
Morimoto Yoshitaka
Department Of Mechanical Systems Engineering Utsunomiya University
-
Morimoto Yoshitaka
Department Of Applied Chemistry Faculty Of Engineering Osaka Institute Of Technology
-
ICHIDA Yoshio
Department of Mechanical Systems Engineering, Utsunomiya University
-
SATO Ryunosuke
Department of Mechanical Systems Engineering, Utsunomiya University
-
Ichida Yoshio
Department Of Mechanical Systems Engineering Utsunomiya University
-
Ichida Yoshio
Graduate School Of Engineering Utsunomiya University
-
Ichida Yoshio
Department Of Mechanical And Intelligent Engineering Graduate School Of Engineering Utsunomiya Unive
-
Sato Ryunosuke
Department Of Mechanical Systems Engineering Utsunomiya University
-
KAJINO Hitoshi
Mitsui Mining & Smelting Co. Ltd.
-
HOSHINO Kazutomo
Mitsui Mining & Smelting Co. Ltd.
-
SATO Masakazu
Mitsui Grinding Wheel Co. Ltd.
-
Kajino Hitoshi
Mitsui Mining & Smelting Co. Ltd.
-
Hoshino Kazutomo
Mitsui Mining & Smelting Co. Ltd.
関連論文
- Sputter Deposition of BiSrCaCuOThin Films : Electrical Properties of Condensed Matter
- E13 Development of High-Performance Vitrified Grinding Wheels using Ultrafine-Crystalline cBN Abrasive Grains(Grinding technology)
- E12 Microscopic Wear Behavior of Grain Cutting Edges in cBN Grinding(Grinding technology)
- Characterization of Wheel Surface Topography in cBN Grinding(Advanced Manufacturing Technology [I])
- Characterization of Wheel Surface Topography in CBN Grinding(CBN grinding technology)
- Cell Adhesion Scaffold Using Self-assemble β-strand Peptides
- Built up os Stimulus-responsive Hydrogels using Self-assembling β-hairpin Peptides
- Evaluation of Thermally Responsive De Novo Peptides
- OS5(P)-23(OS05W0268) Nanoscratching on Chromium Carbides in Cold Work Die Steel Using an Atomic Force Microscope
- Planar Microfluidic System Based on Electrophoresis for Detection of 130-nm Magnetic Labels for Biosensing
- A26 Mechanism of Material Removal in Nanomachining using AFM Diamond Tip(M4 processes and micro-manufacturing for science)
- Formation Mechanism of Finished Surface in Ultrahigh-Speed Grinding with cubic Boron Nitride (cBN) Wheels(Advanced Manufacturing Technology [I])
- Profile Grinding of Superalloys with Ultrafine-Crystalline cBN Wheels(Advanced Manufacturing Technology [I])
- Real-Time Synthesis and Control by Corrected Inverse Transfer Function of an NC Table(Precision positioning and control technology)
- Development of fine-coarse stage by coaxial arrangement of two stepping motors(Precision positioning and control technology)
- Profile Grinding of Superalloys with Ultrafine-Crystalline CBN Wheels(CBN grinding technology)
- Formation Mechanism of Finished Surface in Ultra-High Speed Grinding with CBN Wheels(CBN grinding technology)
- Effects of Uniformity in Wheel Structure on Grinding Characteristics of Vitrified CBN Wheels(CBN grinding technology)
- OS5(P)-22(OS05W0267) Evaluation of Local Work Affected Layer Based on Magnetic Domain Analysis Using Magnetic Force Microscopy
- 336 Study on accuracy compensation of a machining center based on measurement results of machined workpiece
- Analysis and Contfol of a Flexible Robot Arm by Using Experimental Modal Analysis
- Detection of 8 nm Diameter Superparamagnetic Beads by Magnetically-Induced Manipulation of Micrometer-Sized Magnetic Beads: A Novel Protocol for Magnetically-Labeled Biosensing
- B1 Study on Accuracy Compensation of Machining Center Based on Measurement Results of Machined Workpiece : Evaluation of Accuracy of 5-axis Controlled Machining Center(Advanced machine tool)
- Fractal Analysis of Grain Cutting Edge Wear in Superabrasive Grinding
- Wear Characteristics of Vitrified cBN Grinding Wheels
- Patterning of Two-Dimensional Graphene Oxide on Silicon Substrates
- Chemical Mechanical Polishing for Oxygen Free Copper with Manganese Oxide Abrasives