Generalization of Localized Induction Equation(General)
スポンサーリンク
概要
- 論文の詳細を見る
A generalization of the localized induction equation is presented where the generalized equation is integrable and permits the solutions of the stretched vortex filament. Further generalizations are presented.
- 社団法人日本物理学会の論文
- 2006-02-15
著者
-
KONNO Kimiaki
Department of Physics and Research Institute for Atomic Energy, College of Science and Technology, N
-
Kakuhata Hiroshi
Toyama University
関連論文
- Contribution of Higher Order Terms in the Reductive Perturbation Theory. : I. A Case of Weakly Dispersive Wave
- Spiky Soliton in Circular Polarized Alfven Wave
- Relationships among Inverse Method, Backlund Transformation and an Infinite Number of Conservation Laws
- Nonlinear Transverse Vibrations of Elastic Beams under Tension
- A Loop Soliton Propagating along a Stretched Rope
- A System with Two Integrable Hierarchies
- Direct Connection among Nonlinear Evolution Equations Based on O(3) Group
- Nonlinear Transverse Oscillation of Elastic Beams under Tension
- Momentum and Angular Momentum Transport by Vortex Soliton with Axial Flow
- Relationship among Modified WKI Equation,Equation of Motion of a Thin Vortex Filament and That of a Continuous Heisenberg Spin System
- Comment on "The Novel Multi-Soliton Solutions of the MKdV-Sine Gordon Equation"
- Generalization of Localized Induction Equation(General)
- Initial Value Problems of Double Pole and Breather Solutions for the Modified Korteweg-de Vries Equation
- Novel Solitonic Evolutions in a Coupled Integrable,Dispersionless System
- On Two Types of Localized Induction Equation
- Nonlinear Interactions between Solitons in Complex t-Plane.II
- Propagation of Ion Acoustic Cnoidal Wave
- Contribution of Higher Order Terms in the Reductive Perturbation Theory, : II. A Case of Strongly Dispersive Wave
- Generating Function and Its Formal Derivatives for Dynamical Systems
- A Hierarchy for Integrable Equations of Stretched Vortex Filament(General)
- A Generalization of Coupled Integrable,Dispersionless System
- A New Integrable Equation and Its Hierarchy(General)
- Lagrangian, Hamiltonian and Conserved Quantities for Coupled Integrable, Dispersionless Equations
- Fused Hierarchy Produced by mKdV Hierarchy and Sine-Gordon Hierarchy
- Interaction Among Growing, Decaying and Stationary Solitons for Coupled Integrable Dispersionless Equations
- Exchange Magnetic Moments of Baryons and the Quark Model
- Nonlinear Interactions between Solitons in Complex t-Plane.I
- Exchange Current and Leptonic Decays of Baryons in the Quark Model
- Effect of Weak Dislocatio Potential on Nonlinear Wave Propagation in Anharmonic Crystal
- Electromagnetic Properties of Baryons and the Quark Model
- N Soliton Solution of Integrable Differential-Difference Equations(General)
- A Modified Korteweg de Vries Epuation for Ion Acoustic Waves
- New Integrable Nonlinear Evolution Equations
- Effect of Weak Dislocation Potential on Nonlinear Wave Propagation in Anharmonic Crystal : An Infinite Set of Conservation Laws
- Conservation Laws of Nonlinear-Evolution Equations
- Exchange Current and Decays of Decuplet Baryons in the Quark Model
- On Nonleptonic Hyperon Decays. I
- Loop Soliton Solutions of String Interacting with External Field
- A Nonlinear Shallow Water Theory and Its Application to Cnoidal Wave Solutions and Mass Transport
- Some Remarkable Properties of Two Loop Soliton Solutions
- Conservation Laws of Modified Sawada-Kotera Equation in Complex Plane
- A New Integrable Equation and Its Hierarchy(General)
- N Soliton Solution of Integrable Differential-Difference Equations(General)