Optimal Active Control of Nonlinear Vehicle Suspensions Using Neural Networks
スポンサーリンク
概要
- 論文の詳細を見る
This paper analyzes, theoretically and by computer simulation, the capabilities and limitations of neural networks to be used for the identification and optimal control of nonlinear dynamical systems. It is shown how neural networks can be efficiently trained to identify the forward and inverse dynamics of systems and also to work as optimal controllers which minimize some peformance measures of the system to be controlled. The performance of neural networks when applied to the optimal control of nonlinear vehicle suspensions is analyzed and compared with the performance of passive suspensions and that of active suspensions with linear (LQ) controllers designed by linearizing the nonlinear characteristics of the suspensions around the equilibrium point. It is found that nonlinear vehicle suspensions with neuro-control show better performance than suspensions controlled with conventional LQ regulators. Some issues about the implementation of neural networks to improve its convergence and generalization properties are analyzed.
- 一般社団法人日本機械学会の論文
- 1994-12-15
著者
-
Nagai Masao
Tokyo University Of Agriculture And Technology
-
Moran Antonio
Tokyo University of Agriculture and Technology
-
NAGAI Masao
Tokyo University of Agriculture & Technology
関連論文
- An examination of active electromagnetic and mechanical suspension control of superconducting maglev vehicles (特集 第17回MAGDAコンファレンス)
- Collection and Analysis of Close Call Traffic Incident Data with Drive Recorder
- Study on the Dynamic Stability of Repu1sive Magnetic Levitation Systems : Optimal Control of Active Secondary Suspension
- Study on integrated control of active front steer angle and direct yaw moment
- Preliminary Study Concerning the Analysis of Steering Feeling Using Hardware-in-the-Loop Simulator
- Control and evaluation of active suspension for MDOF vehicle model
- Optimal Control of Active Suspension for a High Speed Ground Vehicle : Analysis of a Two-DOF Model with a Pneumatic Actuator : Series C : Vibration, Control Engineering, Engineering for Industry
- Dynamic Characteristics of a Long Train of EML Vehicles over Elevated Flexible Guideways
- 718 Development of Hardware-in-the-Loop Simulator for Analyzing Vehicle Handling and Stability
- Active Vibration Control of Electrodynamic Suspension System
- PREFACE
- Optimal Active Control of Nonlinear Vehicle Suspensions Using Neural Networks
- 608 Lane-Keeping Performance Through Steering Torque Control
- WELCOME MESSAGE
- Vibration isolation analysis and semi-active control of vehicles with connected front and rear suspension dampers
- Analysis and Design of Active Suspensions by H_∽ Robust Control Theory
- The Control of Magnetic Suspension to Suppress hte Self-Excited Vibration of a Flexible Guideway : Series C : Vibration, Control Engineering, Engineering for Industry
- Study of a Car Body Tilting System Using a Variable Link Mechanism: Fundamental Characteristics of Pendulum Motion and Strategy for Perfect Tilting
- Enhancing Safety and Security by Incident Analysis Using Drive Recorders
- Simulation of emergency obstacle avoidance situations using genetic algorithm
- A Study of Vibration Control Systems for Superconducting Maglev Vehicles : (Vibration Control of Lateral and Rolling Motions)
- A Study of Vibration Control Systems for Superconducting Maglev Vehicles (Vibration Control of Vertical and Pitching Motions):(Vibration Control of Vertical and Pitching Motions)
- Classification of Driver Steering Intentions Using an Electroencephalogram