Sudden Drop of Dissipation in Field-Coupled Quantum Dot Resistors
スポンサーリンク
概要
- 論文の詳細を見る
We propose a novel device where energy loss accompanied by current flow through a resistor is recovered, and therefore Joule heat production is exclusively low. This "energy-recovery effect" is caused by dynamical transition due to electronic coherent interference, namely Coulomb interaction within specially designed coupled quantum dots. We study the characteristics of this device as a resistor. We find a sudden drop of energy dissipation due to current flow as a function of electrochemical potential of the reservoir which is coupled to the quantum dots. In addition, we show that resistance of the device depends on the strength of the Coulomb interaction.
- 社団法人応用物理学会の論文
- 1995-01-15
著者
-
Hubler Alfred
Department Of Physics Faculty Of Science And Technology Keio University:(present Address)center For
-
YAMAGUCHI Fumiko
E.L.Gizton Laboratory, Stanford University
-
Kawamura Kiyoshi
Department Of Electrical Engineering College Of Science And Technology Nihon University
-
Yamaguchi F
E.l.gizton Laboratory Stanford University
-
Yamaguchi Fumiko
Department Of Physics Faculty Of Science And Technology Keio University
-
Kawamura Kiyoshi
Department of Chemistry, Faculty of Science, Kyoto University
関連論文
- Native Response of C. elegans Encoded in Its Neuron Network : Cross-Disciplinary Physics
- Does a Randomly Organized Electrical Circuit Function as a Neuronal System?
- Theory of Artificial Atoms and Molecules using Semiconductor Quantum Dots
- Linear Conductance through Parallel Quantum Dot Dimer below the Kondo Temperature
- Conductance through Quantum Dot Dimer Below the Kondo Temperature
- Studies of Charging Effects on Resonant Tunneling Diodes in Terms of Extended Friedel Sum Rule
- Phase Shifts, the Friedel Sum Rule, Resonant Tunneling through Asymmetric Potentials
- In situ Scanning Tunneling Microscopy Nanotip Fabrication with Field-Enhanced Surface Diffusiorn, Thermal Evaporation and Field Emission
- Theory of Transport Through a Single Atomic Junction ( Scanning Tunneling Microscopy)
- The Solution of the Aharonov-Bohm Equation
- Hall Resistance Anomalies and Quasi-Bound States within Hall Junctions
- Analysis of the Hall Effect in Terms of Magneto-Focusing in Quantum Dots
- Phase Relaxation and Non-Equilibrium Transport Properties through Multilevel Quantum Dot
- Fraunhoffer Diffraction of Electrons in Anisotropic Media
- Double Quantum Dots as Dissipative Two Level Systems ( Quantum Dot Structures)
- Theory of Single Electron Tunneling through a Quantum Dot Dimer ( Quantum Dot Structures)
- Solution of an Extended Aharonov-Bohm Problem in a Theory of Dislocation Scattering
- Sudden Drop of Dissipation in Field-Coupled Quantum Dot Resistors
- Fluctuation of Current through a Quantum Dot Far from Equilibrium: Effects of Strong Coulomb Correlatio
- Studies of Many-Body Effect on Resonant Tunneling by Green Function Method
- Influences of Internal Fields of Fast Modulation to the Kondo Effect
- The Direct Derivation of the Nagaoka-Hamann Equation
- On the Deep Level in Plastically Deformed Elemental Semiconductors
- One-Particle Green Function Defined for the s-d Bound State : Demonstration with the Truncated Hamiltonian
- The Ground State Energy of an Electron-Spin System Coupled by Ferromagnetic Interaction
- Contribution to the Theory of s-d Problem : The Spin Precession Terms
- Irreversible Electron Transfer between Two Molecules by Variable Hopping Parameter and Relaxation Processes (General)
- Irreversible Electron Transfer between Two Atoms
- Diamagmetic Susceptibility of Rhombohedral Graphite
- One-Particle Green Function Defined for the s-d Bound State. II : A General Formalism with the Ordinary s-d Hamiltonian
- On Axially- and Spherically-Symmetric Superfluidity in Coupled Fermion System
- Diamagnetic Susceptibility of Multiwall Carbon Nanotubes with Open and Closed Ends
- Magnetic Susceptibility of Oxygen Adsorbed by Type A Bead like Zeolite
- Kink-Solitons in Quantum-Dot Cellular Automata
- Influence of Screw Dislocations on the de Haas-van Alphen Signals from Neck Region of Fermi Surface
- Does a Randomly Organized Electrical Circuit Function as a Neuronal System?