ED2000-80 / SDM2000-80 MOS Memory Using Si Nanocrystals Formed by Wet Etching of Poly-Silicon Along Grain Boundaries
スポンサーリンク
概要
- 論文の詳細を見る
The nanocrystal memory is the most promising candidate of post giga-bit EEPROM since it has some good properties as follows : fast and low-voltage operation using direct tunneling mechanism due to thin gate dielectrics, good nonvolatility due to suppression of charge loss between dots as storage nodes, and simple structure of one transistor-one cell. So it is so important to form nanocrystals. In this paper, a new method to form nanocrystals using wet etching is proposed and characteristics of the memory using this method is analyzed.
- 社団法人電子情報通信学会の論文
- 2000-06-23
著者
-
Shin Hyungcheol
Dept. of Electrical Engineering and Computer Science, Seoul National University
-
Shin Hyungcheol
Dept. Of Eecs Kaist
-
Yoo Seong-jong
Dept. Of Eecs Kaist
-
LEE Jongho
School of Electrical Engineering, Wonkwang University
-
Lee Jongho
School Of Electrical Eng. Wonkwang Univ.
関連論文
- Low cost CMOS LNA design using thin-metal CMOS process (Electron devices: 第15回先端半導体デバイスの基礎と応用に関するアジア・太平洋ワークショップ(AWAD2007))
- Low cost CMOS LNA design using thin-metal CMOS process (Silicon devices and materials: 第15回先端半導体デバイスの基礎と応用に関するアジア・太平洋ワークショップ(AWAD2007))
- Si Nanocrystal Memory Cell with Room-Temperature Single Electron Effects
- Lateral Silicon Field-Emission Devices using EIectron Beam Lithography
- Silicon Nano-Crystal Memory with Tunneling Nitride
- Gate-Induced Drain Leakage Currents in Metal Oxide Semiconductor Field Effect Transistors with High-κ Dielectric
- ED2000-80 / SDM2000-80 MOS Memory Using Si Nanocrystals Formed by Wet Etching of Poly-Silicon Along Grain Boundaries
- CMOS low-noise amplifer with noise suppression technique from gate resistance (Electron devices: 第15回先端半導体デバイスの基礎と応用に関するアジア・太平洋ワークショップ(AWAD2007))
- CMOS low-noise amplifer with noise suppression technique from gate resistance (Silicon devices and materials: 第15回先端半導体デバイスの基礎と応用に関するアジア・太平洋ワークショップ(AWAD2007))
- Si Nanocrystal Memory Cell with Room-Temperature Single Electron Effects