並列順伝播学習方式
スポンサーリンク
概要
- 論文の詳細を見る
多層のニューラルネットの学習方式として、教師データを一個ずつ見ながら誤差が最小になるように結合の重みを変えていく逆伝播法が広く用いられている。しかしながらこの方法では前に学習したパターンの情報を保持した上で重みを変えていくことが難しいため、一般に収束が遅く、単純な排他的論理和を収束させるためにも相当なパラメータのチューニングを必要としている。本論文では上記の問題点を解決するため教師パターンを全てみて順方向に重みを変えていく並列伝播学習方式の提案を行い、排他的論理和等で収束特性の評価を行う。
- 一般社団法人情報処理学会の論文
- 1990-03-14
著者
関連論文
- スーパミニコン内蔵型ベクトルプロセッサの演算制御方式
- コホーネンネットのフィーチャーマップを利用した配置問題の解法
- ベクトル量子化機能を利用したコホーネンネットによる配置問題の解法
- 学習前にパターン認識用ネットの収束を判定する方法
- パターン認識用ネットからのアルゴリズムの抽出法
- 内蔵型高速PROLOGプロセッサIPP(XII) : システム統合
- 非零対角要素を持つホップフィールドニューラルネットを用いたLSIモジュール配置法
- Prologの最適化方式
- パターン認識用ネットの学習の高速化と汎化能力の向上方式
- パターン認識用ニューラルネットの構築法
- パターン認識用ニューラルネットのチューニング法
- パターン認識用ニューラルネットはいかにして構成できるか?
- 線形回帰分析による多層ニューラルネットの中間層ニューロン数決定方法
- モード情報を用いたシャローバックトラックの高速化方式
- 内蔵型PrologプロセッサIPPの最適化コンパイル方式の提案と性能評価
- Prolog最適化コンパイラの開発(VII) : 大域最適化コンパイル方式
- Prolog最適化コンパイラの開発(VI) : 大域最適化評価と高速リスト処理命令の提案
- Prolog最適化コンパイラの開発(V) : 構造体のハッシング方式と動的評価
- 汎化能力向上を目的としたクラスタリング用ニューラルネットの学習方式
- クラスタリング用ニューラルネットの学習方式
- 不等式の求解によるファジィルールのチューニング
- 不等号制約を持つHopfield型ニューラルネットの収束理論
- 教師データから直接抽出したファジィルールによるパターン認識
- ホップフィールドネットの積分の高速化方式
- ホップフィールドニューラルネットの重みの決定法とその評価
- 並列順伝播学習方式
- Hopfield型ニューラルネットの理論的考察