Properties of Granular Percolation in Two Dimensions
スポンサーリンク
概要
- 論文の詳細を見る
Percolation process is studied in a rnodel grantrlar systeun on a square lattice, where grains aregrown arotrnd seeds LIP to the n-th neighbors. Critical percolation coverage is shown to oscillateas a ftrnction of' n. The coverage at xvhich the number of' particles on the strrface of' cltrsterstakes a maxinauna is also shoxvn to oscillate as a function of n, These oscillations are due to thejcro.jections of grains. The percolation process is shown to belong to the ttniversality class of' twodimensional percolation.
- 社団法人日本物理学会の論文
- 1997-11-15
著者
-
Odagaki Takashi
Department Of Chemistry Faculty Of Science Kyoto University
-
Toyofuku Satoshi
Department Of Bioscience And Biotechnology Faculty Of Engineering Okayama University
-
Toyofuku Satoshi
Department Of Physics Kyushu University
-
Odagaki Takashi
Department of Physics,Kyushu University
関連論文
- Construction of the Free Energy Landscape by the Density Functional Approarch(General)
- Construction and Characterization of Hybrid Dehydratases between Adenosylcobalamin-Dependent Diol and Glycerol Dehydratases
- Scaling of the Specific Heat of Fragile-Glass Formers near the Glass Transition Temeprature : Condensed Matter: Structure, etc.
- Homomorphic Cluster Coherent Potential Approximation for Systems with Site-Diagonal and/or Off-Diagonal Randomness
- Hyperinflation Approach to a Tight-Binding Model in Quasiperiodic Chains
- Slow Relaxations in the Supercooled State of a Model Diatomic Molecular Liquid(Cross-disciplinary Physics and Related Areas of Science and Technology)
- Slow Relaxations in the Supercooled State of a Model Diatomic Molecular Liquid
- Ideal Three-Mode Model for the Dynamics of Supercooled Liquids
- Properties of an Ideal Three-Mode Model for the Dynamics of Supercooled Liquids
- Analyticity of Homomorphic Cluster Coherent Potential Approximation
- Analytic Properties of the Homomorphic Cluster Coherent Potential Approximation
- Homomorphic Cluster Coherent Potential Approximation for Off-Diagonal Randomness
- A Microscopic Model of Jump Rate Distribution in the Glass Transition(Condensed Matter : Structure, Mechanical and Thermal Properties)
- The Johari-Goldstein Process of a Model Diatomic Molecular System in the Supercooled State
- Properties of Granular Percolation in Two Dimensions
- Analysis of Diffusion Constant and Non-Gaussianity near the Glass Transition Point in the Frequency Domain(General)
- Nonuniversal Diffusion Exponent for a Soft Percolation Process in Three Dimensions : Condensed Matter: Structure, etc.
- Photon Pumped Spin Wave Instability in Rutile-Type Antiferromagnets. : II. Raman Scattering
- Photon Pumped Spin Wave Instability in Rutile-Type Antiferromagnets
- Nonlinear Energy Response in Free Energy Landscape Picture(General)
- Selfsimilarity in a Class of Quadratic-Quasiperiodic Chains
- Opening Address
- Percolation Analysis of Clusters in Random Graphs
- Binary Self-Similar One-Dimensional Quasilattices : Mutual Local-Derivability Classification and Substitution Rules
- Magnetic Moment of Binary γ-Alloys at 0 K
- Non-Ergodicity and Non-Gaussianity in Vitrification Process
- Temperature-Dependent Percolation Problem in the Bethe Lattice
- Crossover From Two to Three Dimensional Percolation in Thin Layers
- Percolation Approach to the Metal-Insulator Transition in Super-Critical Fluid Metals.II.Quantal Percolation Approach
- Percolation Approach to the Metal-Insulator Transition in Super-Critical Fluid Metals
- Linear and Non-Linear Dielectric Responses of a Model Glass Former
- Non-linear Dielectric Responses of a Model Glass Former under Oscillating Temperature
- The Laplacian Spectra of Small-World Networks(General)
- Finite Memory Walk and Its Application to Small-World Network
- Percolation Analysis of Clusters in Random Graphs
- Binary Self-Similar One-Dimensional Quasilattices: Mutual Local-Derivability Classification and Substitution Rules
- Analysis of Diffusion Constant and Non-Gaussianity near the Glass Transition Point in the Frequency Domain(General)
- A Microscopic Model of Jump Rate Distribution in the Glass Transition(Condensed Matter : Structure, Mechanical and Thermal Properties)