Infrared Absorption of Semiconductor at Low Temperatures
スポンサーリンク
概要
- 論文の詳細を見る
The infrared absorption observed at low temperatures, where the wave length dependence of absorption is like the free carrier absorption and also the magnitude is even larger than at room temperature, is explained on the basis of the direct transition of electrons from a shallow donor level to the lowest conduction band. It is shown that the absorption coefficient resulting from this mechanism is in good agreement with experiments for n-type AlSb, GaP and Si when a reasonable value is taken for the concentration of donor electrons. For the excess absorption observed in the above materials, the indirect transition from a shallow donor level to the conduction bands of subsidiary minima is investigated as a possible mechanism. The calculated absorption curve is shown to be very similar to that due to the interconduction band transition investigated previously.
- 社団法人日本物理学会の論文
- 1964-11-05
著者
関連論文
- NMR Linewidth of Au^ in Gold Metal
- Inter-Atomic Interaction between Electrons. III : Effect of Electron Correlation
- The q-Dependence of the Effective Exchange Parameter Due to Intra-Atomic Interaction
- Inter-Atomic Interaction between Electrons. II
- Theory of Orbital Ordering. II
- Inter-Atomic Interaction between Electrons
- Optical Properties due to Donor Electrons in Semiconductors
- Quadrupole Effect on the NMR Line Shape in Random-Strained Crystals
- Thermoelectric Power of AgCl
- Quantum-Mechanical Calculation for Drude's Absorption in Simple Metals
- Spin-Lattice Relaxation Time Due to the Quadrupole Moment of Au^ in Gold Metal
- The Effect of the Electron Correlation on (1/T)_ in Ferromagnetic Transition Metals
- Quadrupole Effect on NMR Line Shape in Strained Gold Metal
- Optical Absorption in Simple Metals
- Theory of Thermoelectric Power of Ionic Crystals, IV.
- Nuclear Spin-Lattice Relaxation Time Due to the Orbital Interaction
- The Density of States in Dilute Alloys
- Free-Carrier Infrared Absorption in III-V Semiconductors IV. Inter-Conduction Band Transitions
- Nuclear Quadrupole Interaction in Simple Metals
- Electronic Specific Heat in Dilute Alloys
- The Contribution to Dielectric Constant from Interband Transition Metals
- The Effect of the Electron Correlation on the Quantities Relating to the Orbital Interaction in Transition Metals
- Optical Absorption in Noble Metals
- Theory of Thermoelectric Power of Ionic Crystals, II.
- Free-Carrier Infrared Absorption in III-V Semiconductors III. GaAs, InP, GaP and GaSb
- Electric Susceptibility of Impurity Electrons in Semiconductors
- Magnetic Current of Electron Gas in Electromagnetic Wave
- On the Theory of the Thermoelectricity in Two-Band Semiconductors
- On the Electrical Properties of Degenerate Semiconductors
- Self-Energy of Slow Polaron and Variational Method
- Free-Carrier Infrared Absorption and Determination of Deformation-Potential Constant in n-type InSb
- Effect of Inter-Atomic Interaction on Dynamic Susceptibility
- Theory of Thermoelectric Power of Ionic Crystals (I)
- Theory of Orbital Ordering. I
- Infrared Absorption of Semiconductor at Low Temperatures
- Theory of Thermoelectric Power of Ionic Crystals, III