Non-Canonical Folding of Dynkin Diagrams and Reduction of Affine Toda Theories
スポンサーリンク
概要
- 論文の詳細を見る
The equation of motion of affine Toda field theory is a coupled equation for r fields, r is the rank of the underlying Lie algebra. Most of the theories admit reduction, in which the equation is satisfied by fewer than r fields. The reductions in the existing literature are achieved by identifying (folding) the points in the Dynkin diagrams which are connected by symmetry (automorphism). In this paper we present many new reductions. In other words, the symmetry of affine Dynkin diagrams could be extended and it leads to non-canonical foldings. We will show that eventually most of the theories end up in a^<(2)>_<2n> that is the theory cannot have a further dimension m reduction where m<n.
- 理論物理学刊行会の論文
- 1996-03-25
著者
-
SASAKI Ryu
Yukawa Institute for Theoretical Physics, Kyoto University
-
Sasaki R
Kyoto Univ. Kyoto Jpn
-
Sasaki Ryu
Yukawa Institute For Theoretical Physics Kyoto University
-
Khastgir S.
Yukawa Institute For Theoretical Physics Kyoto University
-
Sasaki Ryu
Max-planck-institute Fur Physik Und Astrophysik
-
Khastgir S.Pratik
Yukawa Institute for Theoretical Physics, Kyoto University
-
SASAKI Ryu
Uji Research Center, Yukawa Institute for Theoretical Physics Kyoto University:Department of Mathematical Sciences, University of Durham
-
Khastgir S.Pratik
Yukawa Institute for Theoretical hysics, Kyoto University
関連論文
- Modification of Crum's Theorem for 'Discrete' Quantum Mechanics(General and Mathematical Physics)
- Lax Pair for SU (n) Hubbard Model
- The Ruijsenaars-Schneider Model : Particles and Fields
- Singularity Analysis in A_n Affine Toda Theories : Particles and Fields
- μ-e Universality and the Spontaneous μ-e Mass Splitting
- Boundary Effects in Integrable Field Theory on a Half Line
- Calogero-Sutherland-Moser Systems, Ruijsenaars-Schneider-van Diejen Systems and Orthogonal Polynomials(Particles and Fields)
- Calogero-Moser Models. V : Supersymmetry and Quantum Lax Pair
- Generalised Calogero-Moser Models and Universal Lax Pair Operators
- Calogero-Moser Models. II : Symmetries and Foldings : General and Mathematical Physics
- Calogero-Moser Models. I : A New Formulation : General and Mathematical Physics
- Instability of Solitons in Imaginary Coupling Affine Toda Field Theory
- Calogero-Moser Models. IV : Limits to Toda Theory
- Covariance Properties of Reflection Equation Algebras : Particles and Fields
- Negative Binomial States of Quantized Radiation Fields
- The Exceptional (X_l) (q)-Racah Polynomials(General and Mathematical Physics)
- Primary Fields in a Unitary Representation of Virasoro Algebras : Particles and Fields
- Crum's Theorem for 'Discrete' Quantum Mechanics(General and Mathamatical Physics)
- Deformed Fokker-Planck Equations(Condensed Matter and Statistical Physics)
- Exactly Solvable 'Discrete' Quantum Mechanics; Shape Invariance, Heisenberg Solutions, Annihilation-Creation Operators and Coherent States(Particles and Fields)
- Phase Structure of the SU(3) Gauge-Higgs System.II : Adjoint Higgs : Particles and Fields
- Dual Christoffel Transformations(General and Mathematical Physics)
- Classical Solutions for the Supersymmetric Grassmannian Sigma Models in Two Dimensions. II : Particles and Fields
- Calogero-Moser Models III : Elliptic Potentials and Twisting : General and Mathematical Physics
- Super Virasoro Alegebra and Solvable Supersymmetric Quantum Field Theories : Particles and Fields
- Non-Canonical Folding of Dynkin Diagrams and Reduction of Affine Toda Theories
- Nature of the Schwinger Term in Spinor Electrodynamics
- Exact Classical Solutions of the Coupled System of 0(5) Gauge Fields with Massless Scalar Fields in Euclidean Space
- Dispersion Approach to Homogeneous Renormalization Group Equations
- Dispersion Approach to Anomalies in the Axial-Vector Ward-Takahashi Identities
- Renormalization of the σ-Model Based on Dispersion Relations and Ward-Tkahashi Identities
- The Exceptional (X_l) (q)-Racah Polynomials
- Power Laws in the Dispersive Approach to Field Theory
- Ward-Takahashi Identities in Quantum Electrodynamics
- Crum's Theorem for 'Discrete' Quantum Mechanics
- Instability of Solitons in Imaginary Coupling Affine toda Field Theory
- Calogero-Moser Models. I : A New Formulation : General and Mathematical Physics
- Calogero-Sutherland-Moser Systems, Ruijsenaars-Schneider-van Diejen Systems and Orthogonal Polynomials(Particles and Fields)