Calogero-Moser Models. IV : Limits to Toda Theory
スポンサーリンク
概要
- 論文の詳細を見る
Calogero-Moser models and Toda models are well-known integrable multi-particle dynamical systems based on root systems associated with Lie algebras. The relation between these two types of integrable models is investigated at the levels of the Hamiltonians and the Lax pairs. The Lax pairs of Calogero-Moser models are specified by the representations of the reflection groups, which are not the same as those of the corresponding Lie algebras. The latter specify the Lax pairs of Toda models. The Hamiltonians of the elliptic Calogero-Moser models tend to those of Toda models as one of the periods of the elliptic function goes to infinity, provided the dynamical variables are properly shifted and the coupling constants are scaled. On the other hand most of Calogero-Moser Lax pairs, for example, the root type Lax pairs, do not have a consistent Toda model limit. The minimal type Lax pairs, which corresponds to the minimal representations of the Lie algebras, tend to the Lax pairs of the corresponding Toda models.
- 理論物理学刊行会の論文
- 1999-10-25
著者
-
高崎 金久
京都大学人間・環境学研究科
-
SASAKI Ryu
Yukawa Institute for Theoretical Physics, Kyoto University
-
Sasaki R
Kyoto Univ. Kyoto Jpn
-
Sasaki Ryu
Yukawa Institute For Theoretical Physics Kyoto University
-
TAKASAKI Kanehisa
Department of Fundamental Sciences, Faculty of Integrated Human Studies Kyoto University
-
Khastgir S
Yukawa Institute For Theoretical Physics Kyoto University
-
Khastgir S.
Yukawa Institute For Theoretical Physics Kyoto University
-
Takasaki Kanehisa
Department Of Fundamental Sciences Faculty Of Integrated Human Studies Kyoto University
-
Khastgir S.P.
Yukawa Institute for Theoretical Physics, Kyoto University
-
SASAKI Ryu
Uji Research Center, Yukawa Institute for Theoretical Physics Kyoto University:Department of Mathematical Sciences, University of Durham
-
KHASTGIR S.
Yukawa Institute for Theoretical Physics, Kyoto University
関連論文
- Modification of Crum's Theorem for 'Discrete' Quantum Mechanics(General and Mathematical Physics)
- W-infinity 代数と非線形可積分系(場の理論の基礎的諸問題)
- 変数分離の簡単な模型 (超函数と線型微分方程式 2006. 数学史とアルゴリズム)
- 多成分戸田方程式のhierarchy(ソリトンと統計物理学)
- 戸田方程式のHierarchyについて (Recent development in gauge theory and integrable systems )
- ダイマー模型とその周辺(可積分系数理の眺望)
- 弦方程式の時間発展のHamilton構造 (複素領域における微分方程式の大域解析と漸近解析)
- 弦方程式のスペクトル曲線とHamilton構造 (微分方程式の変形と漸近解析)
- dressing chainのスペクトル曲線とHamilton構造 (可積分系研究における双線形化法とその周辺)
- Painleve-Calogero対応 (離散可積分系の研究の進展 : 超離散化・量子化)
- Painleve-Calogero correspondence (Analysis of Painleve equations)
- 非線形波動の変調とWhitham方程式 (繰り込み群の数理科学での応用)
- Calogero-Moser系から見たPainleve方程式(Painleve系, 超幾何系, 漸近解析)
- Whitham Deformations and Tau Functions in N = 2 Supersymmetric Gauge Theories
- 微分方程式と計算可能性(離散可積分系と離散解析)
- 漸近解析入門:なぜ漸近級数は発散するか?(巾零幾何と解析)
- 高次元可積分ヒエラルヒーの$\tau$函数(非線型可積分系の研究の現状と展望)
- QUASI-CLASSICAL ANALYSIS OF NONLINEAR INTEGRABLE SYSTEMS(Microlocal Geometry)
- W-infinity代数の諸相(非線型可積分系の研究の現状と展望)
- W ALGEBRA, TWISTOR, AND NONLINEAR INTEGRABLE SYSTEMS(Algebraic Analysis and Number Theory)
- 複素WKB法の厳密な取り扱いと原子衝突過程への応用(複素WKB法の理論と物理学への応用)
- 無限次元の等質空間、接続、曲率の概念に対する代数解析的視点:普遍グラスマン多様体を中心に
- $\mathcal{D}$-Module Structures in Multi-Dimensional Nonlinear Integrable Systems(Microlocal Analysis of Differential Equations)
- 複素WKB法の解析的裏付けと接続問題(超局所解析とその応用)
- 戸田格子とD加群について(非線型積分可能系の代数解析学)
- Super KP, Super Grassmannian and Super D-Modules(Hirota's Method in Soliton Theory)
- 普遍グラスマン多様体とアノマリー(代数解析学の展望)
- 自己双対および超ケーラー計量に対するタウ函数の類似について(代数解析学の諸相)
- 高次元積分可能系の変換理論の問題(D加群と非線型可積分系)
- Differential Equations and Grassmann Manifolds : from Prof. Sato's lectures(Theta Functions and Related Topics)
- Einstein方程式の自己双対解におけるGrassmann多様体の構造(代数解析学の現況)
- Conformally Self-Dual Metrics and Integrability(Hyperfunctions and Differential Equations)
- Twistorとは何か(Infinite Analysis)
- 自己双対Einstein方程式について(超局所解析と大域解析)
- ON THE STRUCTURE OF SOLUTIONS TO THE SELF-DUAL YANG-MILLS EQUATIONS(Algebraic Analysis)
- ある種の弱双曲型微分作用素に対する特異Cauchy問題 (フーリェ超函数と偏微分方程式)
- Lax Pair for SU (n) Hubbard Model
- ツイスターがもたらしたもの (ツイスター理論の拡がり--多彩な発展と今後への展望)
- The Ruijsenaars-Schneider Model : Particles and Fields
- Singularity Analysis in A_n Affine Toda Theories : Particles and Fields
- μ-e Universality and the Spontaneous μ-e Mass Splitting
- Boundary Effects in Integrable Field Theory on a Half Line
- Calogero-Sutherland-Moser Systems, Ruijsenaars-Schneider-van Diejen Systems and Orthogonal Polynomials(Particles and Fields)
- Calogero-Moser Models. V : Supersymmetry and Quantum Lax Pair
- Generalised Calogero-Moser Models and Universal Lax Pair Operators
- Calogero-Moser Models. II : Symmetries and Foldings : General and Mathematical Physics
- Calogero-Moser Models. I : A New Formulation : General and Mathematical Physics
- Instability of Solitons in Imaginary Coupling Affine Toda Field Theory
- Calogero-Moser Models. IV : Limits to Toda Theory
- Covariance Properties of Reflection Equation Algebras : Particles and Fields
- Negative Binomial States of Quantized Radiation Fields
- The Exceptional (X_l) (q)-Racah Polynomials(General and Mathematical Physics)
- Primary Fields in a Unitary Representation of Virasoro Algebras : Particles and Fields
- Crum's Theorem for 'Discrete' Quantum Mechanics(General and Mathamatical Physics)
- Deformed Fokker-Planck Equations(Condensed Matter and Statistical Physics)
- Exactly Solvable 'Discrete' Quantum Mechanics; Shape Invariance, Heisenberg Solutions, Annihilation-Creation Operators and Coherent States(Particles and Fields)
- Phase Structure of the SU(3) Gauge-Higgs System.II : Adjoint Higgs : Particles and Fields
- Dual Christoffel Transformations(General and Mathematical Physics)
- Classical Solutions for the Supersymmetric Grassmannian Sigma Models in Two Dimensions. II : Particles and Fields
- Calogero-Moser Models III : Elliptic Potentials and Twisting : General and Mathematical Physics
- Super Virasoro Alegebra and Solvable Supersymmetric Quantum Field Theories : Particles and Fields
- Non-Canonical Folding of Dynkin Diagrams and Reduction of Affine Toda Theories
- Nature of the Schwinger Term in Spinor Electrodynamics
- Exact Classical Solutions of the Coupled System of 0(5) Gauge Fields with Massless Scalar Fields in Euclidean Space
- Dispersion Approach to Homogeneous Renormalization Group Equations
- Dispersion Approach to Anomalies in the Axial-Vector Ward-Takahashi Identities
- Renormalization of the σ-Model Based on Dispersion Relations and Ward-Tkahashi Identities
- Structure and duality of D-modules related to KP hierarchy
- On Riemann-Hilbert transformations
- The Exceptional (X_l) (q)-Racah Polynomials
- Power Laws in the Dispersive Approach to Field Theory
- Ward-Takahashi Identities in Quantum Electrodynamics
- Crum's Theorem for 'Discrete' Quantum Mechanics
- Instability of Solitons in Imaginary Coupling Affine toda Field Theory
- Calogero-Moser Models. I : A New Formulation : General and Mathematical Physics
- Calogero-Sutherland-Moser Systems, Ruijsenaars-Schneider-van Diejen Systems and Orthogonal Polynomials(Particles and Fields)